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Abstract

The space of Fredholm operators of �xed index is strati�ed by submanifolds according to

the dimension of the kernel. We give su�cient conditions for a family of elliptic operators

to intersect these strata transversely. The importance of our conditions is that they easily

generalize to equivariant situations, such as those which arise from transversality questions

for multiple covers of J–holomorphic maps. Using this abstract framework, we give a concise

exposition of Wendl’s progress towards establishing the super-rigidity conjecture.

1 Introduction

Let X and Y be two �nite dimensional vector spaces. The space Hom(X ,Y ) is strati�ed by the

submanifolds

Lr B {L ∈ Hom(X ,Y ) : rkL = r }

of codimension

codimLr = (dimX − r )(dimY − r ).

This generalizes to in�nite dimensions as follows. Let X and Y be two Banach spaces. The space

of Fredholm operators from X to Y , denoted by F(X ,Y ), is strati�ed by the submanifolds

(1.1) Fd,e B {L ∈ F(X ,Y ) : dim kerL = d and dim cokerL = e}

of codimension

(1.2) codimFd,e = de .

In many geometric problems, especially in the study of moduli spaces in algebraic geometry, gauge

theory, and symplectic topology, one is led to consider families of elliptic operators D : P →

F(X ,Y ) parametrized by a Banach manifold P and to analyze the subsets D−1(Fd,e ).
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The archetypal example is Brill–Noether theory in algebraic geometry. Let Σ be a closed, con-

nected Riemann surface. Denote by Pic(Σ) the Picard group of isomorphism classes of holomorphic

line bundles L → Σ. Brill–Noether is concerned with the study of the subsets Gr
d ⊂ Pic(Σ), called

the Brill–Noether loci, de�ned by

Gr
d B

{
[L] ∈ Pic(Σ) : deg(L) = d and dimH 0(Σ,L) = r + 1

}
.

The fundamental results of this theory deal with the questions of whetherGr
d is non-empty, smooth,

and of the expected codimension.

This connects to the previous discussion as follows. Fix a Hermitian line bundle L of degree

d . Denote the space of unitary connections on L by A(L). The complex gauge group GC(L)
acts on A(L) and the quotient A(L)/GC(L) is biholomorphic to Pic

d (Σ), the component of Pic(Σ)
parametrizing holomorphic line bundles of degree d . De�ne the family of elliptic operators

¯∂ : A(L) → F(Γ(L),Ω0,1(Σ,L))

by assigning to every connection A the Dolbeault operator
¯∂A = ∇

0,1
A . Set

G̃r
d B

¯∂−1(Fr+1,д−d+r (X ,Y )).

It follows from the Riemann–Roch Theorem and Hodge theory that the Brill–Noether loci can be

described as the quotients

Gr
d = G̃

r
d/G

C(L).

If Gr
d is non-empty, then

codimGr
d = codim G̃r

d 6 (r + 1)(д − d + r ).

This is an immediate consequence of the de�nition G̃r
d and (1.2). Ideally, every Gr

d is smooth of

codimension (r + 1)(д − d + r ). This is not always true, but Gieseker [Gie82] proved that it holds

for generic Σ; see also [EH83; Laz86]. For an extensive discussion of Brill–Noether theory we refer

the reader to [ACGH85].

By analogy, for a general family of elliptic operators D : P→ F(X ,Y ) we ask the following

questions:

1. When are the subsets D−1(Fd,e ) non-empty?

2. When are they smooth submanifolds of P?

3. What are their codimensions?

Not much is known about (1), although index theory and the theory of spectral �ow can yield partial

results. A simple answer to questions (2) and (3) is that D−1(Fd,e ) is smooth and of codimension

de if the map D is transverse to Fd,e . However, for many naturally occurring families of elliptic

operators this condition does not hold. For example, if D is a family of elliptic operators over a
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manifold M and V is a local system, then the family DV
of the elliptic operators D twisted by V

often is not transverse to Fd,e even if D is. Related issues arise for families of elliptic operators

pulled back by a covering map π : M̃ → M . The purpose of this article is to give useful answers

to questions (2) and (3) which apply to these equivariant situations. This theory is developed in

Part I.

The issues discussed above are well-known to arise from multiple covers in the theory of

J–holomorphic maps in symplectic topology. In fact, our motivation for writing this article came

from trying to understand Wendl’s progress towards establishing Bryan and Pandharipande’s

super-rigidity conjecture [Wen16]. In Part II we give a concise exposition of Wendl’s work using

the abstract framework developed here. A key di�erence between Wendl’s approach and ours is

the use of the language of local systems. We believe that this makes the proof easier to follow.

In future work we plan to study transversality for multiple covers of calibrated submanifolds

in manifolds with special holonomy such as associative submanifolds in G2–manifolds and special

Lagrangians in Calabi–Yau 3–folds.

Acknowledgements This material is based upon work supported by the National Science Foun-

dation under Grant No. 1754967 and the Simons Collaboration Grant on “Special Holonomy in

Geometry, Analysis and Physics”.

Part I

Equivariant Brill–Theory Theory
Throughout this part, let (M,д) be a connected, oriented Riemannian manifold and let E and F be

real vector bundles over M equipped with Euclidean metrics and metric connections. We �xed a

point x0 ∈ M . We assume that the injectivity radius of д is bounded below and that the Riemann

curvature tensor Rд , the curvature tensors of the connections on E and F , as well as all of their

derivatives are bounded. For k ∈ N0, we denote byW k,2Γ(E) andW k,2Γ(F ) the Sobolev completion

of the space of compactly supported sections of E and F with respect to theW k,2
–norm induced

by the Euclidean metric and the connection on E and F , respectively. We set L2Γ(E) BW 0,2Γ(E)
and L2Γ(F ) BW 0,2Γ(F ). Given two Banach spaces X and Y , we denote by L(X ,Y ) the Banach

space of bounded linear operators from X to Y equipped with the operator norm.

2 Flexibility and Petri’s condition

De�nition 2.1. Let k ∈ N0. A family of linear elliptic di�erential operators of order k consists

of a Banach manifold P and a smooth map

D : P→L(W k,2Γ(E),L2Γ(F ))
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such that for every p ∈ P the operator Dp B D(p) is the extension of a linear elliptic di�erential

operator of order k with smooth coe�cients which are bounded and all of whose derivatives are

bounded.

De�nition 2.2. Let (Dp )p∈P be a family of linear elliptic di�erential operators. Given d, e ∈ N0,

set

Pd,e B
{
p ∈ P : dim kerDp = d and dim cokerDp = e

}
.

We are interested in �nding conditions under which Pd,e is a submanifold of P. Since

Pd,e = D−1(Fd,e )

with Fd,e denoting the submanifold of L(W k,2Γ(E), Γ(F )) de�ned in (1.1), this is the case if the

map D is transverse to Fd,e . Let us describe what this means more concretely. If p ∈ Pd,e , then

Dp is a Fredholm operator and the normal space to Fd,e at Dp is

NDpFd,e = Hom(kerDp , cokerDp );

see, e.g., [Kos70, Section 1(b)] and Proposition 2.16.

De�nition 2.3. Let (Dp )p∈P be a family of linear elliptic di�erential operators. Let p ∈ P. Denote

by dpD the derivative of the map D at p. De�ne Lp : TpP→ Hom(kerDp , cokerDp ) by

Lp (p̂)s B dpD(p̂)s mod imDp

for p̂ ∈ TpP and s ∈ kerDp .

Lp is the projection of dpD on the normal space NDpFd,e . Therefore, D being transverse to

Fd,e means that Lp is surjective for every p ∈ Pd,e . In this case, the Regular Value Theorem

guarantees that Pd,e is a submanifold of P of codimension

dim Hom(kerDp , cokerDp ) = de .

The task at hand is thus to �nd conditions which imply the surjectivity of Lp . For example, Lp
is surjective if the evaluation map

(2.4) evp : Γ(Hom(E, F )) → Hom(kerDp , cokerDp )

satis�es the following two conditions:

1. The image of Lp contains the image of evp .

2. The evaluation map evp is surjective; equivalently, its adjoint ev
∗
p is injective.

The following de�nitions introduce slight variations of these conditions.
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De�nition 2.5. A family of linear elliptic di�erential operators (Dp )p∈P is called �exible if for

every p ∈ P the following holds: for every A ∈ Γ(Hom(E, F )) with compact support there is a

p̂ ∈ TpP such that

(2.6) dpD(p̂)s = As mod imDp

for every s ∈ kerDp .

The notion of �exibility is gauge invariant in the following sense.

Proposition 2.7. Let (Dp )p∈P and (D̃p )p∈P be families of linear elliptic di�erential operators. Let
ϕ : P → Aut(E) and ψ : P → Aut(F ) be smooth families of gauge transformations of E and F
parametrized by P which are bounded and all of whose derivatives are bounded. If (Dp )p∈P and
(D̃p )p∈P are related by

D̃(p) = ϕ(p) ◦ D(p) ◦ψ (p),

then (Dp )p∈P is �exible if and only if (D̃p )p∈P is �exible.

Proof. Since

dpD̃(p̂) = ϕ(p) ◦ dpD(p̂) ◦ψ (p) + dpϕ(p̂) ◦ D̃(p) + D̃(p) ◦ψ (p)
−1 ◦ dpψ (p̂),

for every p̂ ∈ TpP and every s̃ ∈ ker D̃(p) we have

dpD̃(p̂)s̃ = ϕ(p) ◦ dpD(p̂) ◦ψ (p)s̃ mod im D̃p .

Suppose that (Dp )p∈P is �exible. Given Ã ∈ Γ(Hom(E, F )) with compact support, let p̂ ∈ TpP be

such that (2.6) with A = ϕ(p)−1 ◦ Ã ◦ψ (p)−1
holds for all s ∈ kerDp . Since kerDp = ψ (p) ker D̃p

and im D̃p = ϕ(p) imDp , it follows that

dpD̃(p̂)s̃ = Ãs̃ mod im D̃p

for every s̃ ∈ ker D̃p . Therefore, (D̃p )p∈P is �exible as well. �

Remark 2.8. It is tempting to simplify De�nition 2.5 and demand that for every A ∈ Γ(Hom(E, F ))
with compact support there is a p̂ ∈ TpP such that

dpD(p̂) = A.

If this holds, then we say that (Dp )p∈P is strongly �exible. The disadvantage of strong �exibility

is that it fails to be gauge invariant; that is: the analogue of Proposition 2.7 does not hold.

Flexibility (in fact, even strong �exibility) is not a rare condition and is usually easy to verify.

De�nition 2.9. Let D : Γ(E) → Γ(F ) be a linear elliptic di�erential operator. Denote its formal

adjoint by D∗ : Γ(F ) → Γ(E). We say that D satis�es Petri’s condition if the map

kerD ⊗ kerD∗ → Γ(E ⊗ F )

is injective.
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Remark 2.10. In algebraic geometry, a Riemann surface Σ is said to satisfy Petri’s condition if for

every holomorphic line bundle L → Σ the Petri map

(2.11) H 0(Σ,L) ⊗ H 0(Σ,KΣ ⊗L∗) → H 0(Σ,KΣ)

is injective [ACGH85, Lemma 1.6, Chapter IV].

Petri’s condition has the following important consequence.

Proposition 2.12. Let D : Γ(E) → Γ(F ) be a linear elliptic di�erential operator. Suppose that the
extension of D to an operatorW k,2Γ(E) → L2Γ(F ) is Fredholm. Denote by

m : Hom(kerD, cokerD) → L2Γ(Hom(E, F ))

the adjoint of the evaluation map (2.4). If D satis�es Petri’s condition, thenm is injective.

Proof. Denote by D∗ : Γ(F ) → Γ(E) the formal adjoint of D. Since D is Fredholm we can identify

coker(D : W k,2Γ(E) → L2Γ(F )) = ker(D∗ : L2Γ(F ) →W −k,2Γ(E)).

Set n B dim kerD. Let s1, . . . , sn be a L2
orthonormal basis of kerD. A computation shows that

the mapm is given by

(2.13) m(B) =
n∑
i=1

〈·, si 〉 Bsi .

If B is non-zero, then it follows from directly from De�nition 2.9 thatm(B) cannot vanish identically.

�

Petri’s condition appears to be a subtle property and di�cult to verify. However, there is a

simple class of operators for which it holds almost trivially.

Proposition 2.14. Every �rst order di�erential operatorD over a manifoldM of dimension one satis�es
Petri’s condition.

Proof. By the uniqueness of solutions to ODEs, every element of kerD is determined by its value

at any point x ∈ M . The same holds for D∗. This directly implies the assertion. �

Theorem 2.15. Let d, e ∈ N0. If (Dp )p∈P is a �exible family of linear elliptic di�erential operators
satisfying Petri’s condition, thenPd,e ⊂ P is a smooth submanifold of codimension

codimPd,e = de .

The proof relies on the following observation.
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Proposition 2.16. For every p ∈ Pd,e there exits an open neighborhoodU inP and a smooth map
Z : U→ Hom(kerDp , cokerDp ) such that

Pd,e ∩U = Z−1(0) and dpZ = Lp .

Proof. Let p0 ∈ Pd,e . Pick a complement coimDp0
of kerDp0

⊂W k,2Γ(E). Pick a lift of cokerDp0

to L2Γ(F ). With respect to the splittings

W k,2Γ(E) = coimDp0
⊕ kerDp0

and L2Γ(F ) = imDp0
⊕ cokerDp0

write Dp as

Dp =

(
D11

p D12

p
D21

p D22

p

)
.

Let U be an open neighborhood of p0 ∈ P such that D11

p is invertible for every p ∈ U. De�ne

Z : U→ Hom(kerDp0
, cokerDp0

) by

Z (p) B D22

p − D
21

p (D
11

p )
−1D12

p .

By direct inspection we see that dp0
Z = Lp0

. To see that Pd,e ∩U = Z−1(0) we compute that

with

Φp B

(
(D11

p )
−1

0

−D21

p (D
11

p )
−1

id

)
and Ψp B

(
id −(D11

p )
−1D12

p
0 id

)
we have

ΦpDpΨp =

(
id 0

0 Z (p)

)
. �

Proof of Theorem 2.15. In light of the above, the theorem will follow from the Regular Value The-

orem applied to Z provided Lp is surjective for every p ∈ Pd,e . Since p ∈ Pd,e , Dp is Fredholm.

Suppose B ∈ Hom(kerDp , cokerDp ) � Hom(kerDp , kerD∗p ) is perpendicular to imLp ; that is

〈B,Lp (p̂)〉 = 0

for every p̂ ∈ TpP. Since (Dp )p∈P is �exible, for every A ∈ Γ(Hom(E, F )) with compact support

〈m(B),A〉L2 = 0.

Therefore, m(B) vanishes. It follows from Proposition 2.12 that B vanishes. Therefore, Lp is

surjective. �

Remark 2.17. It should be pointed out that neither �exbility nor Petri’s condition are necessary for

the conclusion of Theorem 2.15 to hold. However, these conditions have the advantage that they

can be easily adapted to the equivariant setting.
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3 Pulling back and twisting

This section introduces two constructions which produce new linear elliptic operators from old

ones: pulling back by a covering map and twisting by a Euclidean local system.

De�nition 3.1. Let π : M̃ → M be a covering map with M̃ connected. Let D : Γ(E) → Γ(F ) be a

linear di�erential operator. The pullback of D by π is the linear di�erential operator

π ∗D : Γ(π ∗E) → Γ(π ∗F )

characterized by

(π ∗D)(π ∗s) = π ∗(Ds).

De�nition 3.2. A Euclidean local system V is a Euclidean vector bundle V together with a �at

metric connection. To each Euclidean local system we assign its monodromy representation
µ : π1(M,x0) → O(V ) with V denoting the �ber of V over x0.

Remark 3.3. The map V 7→ µ induces a bijection between gauge equivalence classes of Euclidean

local systems of rank r and equivalence classes of representations π1(M,x0) → O(r ) up to con-

jugation by O(r ). For a more detailed discussion of local systems we refer the reader to [Dim04,

Section 2.5; Voi07, Section 9.2.1].

De�nition 3.4. Let D : Γ(E) → Γ(F ) be a linear di�erential operator. Let V be a Euclidean local

system on M . The twist of D by V is the linear di�erential operator

DV
: Γ(E ⊗ V ) → Γ(F ⊗ V )

characterized as follows: if U is a open subset M , s ∈ Γ(U ,E), and f ∈ Γ(U ,V ) is constant, then

DV (s ⊗ f ) = (Ds) ⊗ f .

The following shows that the pullback π ∗D is equivalent to the twist DV
for a suitable choice

of V .

Proposition 3.5. Let D : Γ(E) → Γ(F ) be a linear di�erential operator. Let π : M̃ → M be a covering
map with M̃ connected. Fix x̃0 ∈ M̃ with π (x̃0) = x0. Denote by

C B π∗π1(M̃, x̃0) < π1(M,x0)

the characteristic subgroup of π and by

N B
⋂

д∈π1(M,x0)

дCд−1

its normal core. Denote by R the trivial rank one local system on M̃ . Set

V B π∗R.

The following hold:
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1. The monodromy representation of V factors through G B π1(M,x0)/N .

2. There are isomorphisms π∗ : Γ(π ∗E) � Γ(E ⊗ V ) and π∗ : Γ(π ∗F ) � Γ(F ⊗ V ) such that

DV = π∗ ◦ π
∗D ◦ π−1

∗ .

Remark 3.6. If π is a normal covering, thenC = N andG = π1(M,x0)/N is its deck transformation

group. If π has k sheets, thenC has index k . Its normal core has index at most k! by an elementary

result known as Poincaré’s Theorem. It follows from the observation that the kernel of the

canonical homomorphism π1(M,x0) → Bij(G/C) is precisely N and Bij(G/C) � Sk .

Proof of Proposition 3.5. The monodromy representation π1(M,x0) → O(V ) of V is trivial on C;

hence, it must factor through G = π1(M,x0)/N .

For every vector bundle G̃ over M̃ there is an isomorphism Γ(G̃) � Γ(π∗G̃). For every vector

bundle G over M̃ there is an isomorphism

π∗π
∗G � π∗(π

∗G ⊗ R) � G ⊗ π∗R = G ⊗ V .

Denote the resulting isomorphism Γ(π ∗G) � Γ(G ⊗ V ) by π∗. For s ∈ Γ(G) and f ∈ C∞(M̃) we

have

π∗((π
∗s)f ) = s ⊗ π∗ f .

Let U be an open subset of M , s ∈ Γ(U ,E), and f ∈ Γ(U ,V ). Suppose that f is constant. This is

equivalent to the corresponding function
˜f B (π∗)

−1 f on Ũ B π−1(U ) being locally constant. By

the characterizing properties of DV
and π ∗D and since π ∗D is a di�erential operator, we have

DV (s ⊗ f ) = (Ds) ⊗ f

and

(π ∗D)(π∗)
−1(s ⊗ f ) = (π ∗D)(π ∗s · ˜f )

= (π ∗(Ds) · ˜f )

= (π∗)
−1 ((Ds) ⊗ f ) .

This proves that DV = π∗ ◦ π
∗D ◦ π−1

∗ . �

4 Equivariant �exibility and the equivariant Petri condition

Twisting and pulling back lead to families of linear elliptic di�erential operators which fail to be

�exible in the sense of De�nition 2.5 (except for a few corner cases). In what follows we discuss

variants of Theorem 2.15 which apply to such families of linear elliptic di�erential operators.
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Throughout this section and the next, letG be the quotient of π1(M,x0) by a �nite index normal

subgroup N . Denote by π : M̃ → M the covering map with characteristic subgroup N . Denote by

V1, . . . ,Vm

the irreducible representations of G. Denote by V i the local system associated with Vi and set

Ki B EndG (Vi ) and ki B dimR Ki .

Remark 4.1. The local system V i carries a canonical Ki–action. By Schur’s Lemma, Ki is a real

division algebra; hence, by Frobenius’ Theorem, it is either R, C, or H and ki ∈ {1, 2, 4}. Since D
V i
p

commutes with the action of Ki , kerD
V i
p and cokerD

V i
p are modules over Ki .

De�nition 4.2. A family of linear elliptic di�erential operators (Dp )p∈P is calledG–equivariantly
�exible if for every p ∈ P the following holds: for every A ∈ Γ(Hom(E, F )) with compact support

there is a p̂ ∈ TpP such that

dpπ
∗D(p̂)s = (π ∗A)s mod imπ ∗Dp

for every s ∈ kerπ ∗Dp .

Proposition 2.7 holds with �exible replaced by G–equivariantly �exible. If (Dp )p∈P is strongly

�exibly, then it is G–equivariantly �exible.

De�nition 4.3. Let D : Γ(E) → Γ(F ) be a linear elliptic di�erential operator. We say that D satis�es

the G–equivariant Petri condition if π ∗D satis�es Petri’s condition.

Theorem 4.4. Let (Dp )p∈P be aG–equivariantly �exible family of linear elliptic di�erential operators
satisfying the G–equivariant Petri condition. For every d, e ∈ Nm

0
the subset

PN
d,e B

{
p ∈ P : dimKi kerD

V i
p = di and dimKi cokerD

V i
p = ei

}
⊂ P

is a smooth submanifold of codimension

codimPN
d,e =

m∑
i=1

kidiei .

The proof is given in Section 5. The following is an immediate consequence of Theorem 4.4.

Proposition 4.5. Assume the situation of Theorem 4.4. Let V be a Euclidean local system whose
monodromy representation factors through G. Let `1, . . . , `m ∈ N0 be such that

V �
m⊕
i=1

V ⊕`ii .
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Given d, e ∈ N0, set

m
V
d,e B

{
(d, e) ∈ Nm

0
× Nm

0
:

m∑
i=1

`ikidi = d and
m∑
i=1

`ikiei = e

}
and

P
V
d,e B

{
p ∈ P : dim kerD

V
p = d and dim cokerD

V
p = e

}
.

The following hold:

1. If mV
d,e is empty, then so is PV

d,e .

2. PV
d,e ⊂ P is a disjoint �nite union of submanifolds of codimension at least

min

(d,e)∈mVd,e

m∑
i=1

kidiei .

Proof assuming Theorem 4.4. Since

D
V
p =

m⊕
i=1

(
D
V i
p

) ⊕`i
,

we have

P
V
d,e =

∐
(d,e)∈mVd,e

PN
d,e .

The assertion thus follows from Theorem 4.4. �

5 Proof of Theorem 4.4

The representation associated to the local system

V B π∗R

is the left regular representation: R[G] = Map(G,R)with (д · f )(x) = f (д−1x). Recall, the following

classical result from representation theory.

Theorem 5.1. LetG be a �nite group. LetV1, . . . ,Vm be the irreducible representations ofG . Denote by
Ki B EndG (Vi ) the commuting algebra of Vi . The left regular representation of G can be decomposed
into irreducible representations as follows

R[G] �
m⊕
j=1

Vi ⊗Ki V
∗
i

with G acting on Vi through the irreducible representation and trivially on V ∗i . In particular, the
multiplicity of Vi in R[G] is the dimension of Vi over Ki . The right regular representation decomposes
analogously withG acting on V ∗i trough the dual of the irreducible representation and trivially on Vi .
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Proof. Although this result is classical, we provide a sketch of its proof. R[G] is the group algebra

of G . A representation of G is nothing but an R[G]–module. Maschke’s Theorem says that for any

�nite group R[G] is a semisimple R–algebra. Any �nite-dimensional semisimple R–algebra is a

product of simple algebras. Wedderburn’s Structure Theorem [Lan02, Chapter XVII Corollary

3.5] says that any simple R–algebra A whose unique irreducible representation is denoted by V is

isomorphic to EndK(V ) = V ⊗K V
∗

with K = EndA(V ). �

This has the following important consequence.

Proposition 5.2. In the above situation the following hold:

1. The local system V decomposes as

(5.3) V �
m⊕
i=1

V i ⊗Ki V
∗
i .

2. The space of sections of V is a G–representation and decomposes as

(5.4) Γ(V ) �
m⊕
i=1

Γ(V i ) ⊗Ki V
∗
i

with G acting on V ∗i through the contragredient1 of the irreducible representation.

Proof. Given an open set U ⊂ M , set

Ũ B π−1(U ) ⊂ M̃ .

The restriction of π makes Ũ a principal G–bundle over U .

By construction for every such open set U ⊂ M we have

Γ(U ,V ) = C∞(Ũ ,R).

Denote by Ũ ×G G the quotient of Ũ ×G by the left action

д · (x ,h) = (xд−1,дh).

It is obvious that Ũ → Ũ ×G G,x 7→ [x , 1] is an isomorphism of principal G–bundles. Denote

by C∞(Ũ ,R[G])G the set of smooth G–equivariant maps from Ũ to R[G]. The G–equivariant

exponential law asserts that

C∞(Ũ ×G G,R) = C∞(Ũ ,R[G])G .

1Given a representation ρ : G → GL(V ), its contragredient is the representation G → GL(V ∗) given by д · v∗ =
v∗ ◦ ρ(д−1).
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Putting everything together we obtain

Γ(U ,V ) = C∞(Ũ ,R[G])G .

It follows from this identity that V is the vector bundle M̃ ×G R[G]. Theorem 5.1 thus implies that

V = M̃ ×G R[G]

� M̃ ×G

(
m⊕
i=1

Vi ⊗Ki V
∗
i

)
=

m⊕
i=1

V i ⊗Ki V
∗
i .

This is the decomposition of V asserted in (1). It immediately implies the decomposition (5.4) of

Γ(V ) as a vector space.

The deck transformation group G acts on M̃ on the right and thus on C∞(M̃,R) = Γ(V ) on

the left. Therefore, Γ(V ) is a G–representation. The right action of G on M̃ translates to the

obvious right action ofG on M̃ ×G G . Through the exponential law the induced left action on Γ(V )
corresponds to the inverse of the right action on C∞(M̃,R[G])G induced by the right action on

R[G]. It follows from Theorem 5.1 that with respect to the decomposition (5.4) the latter action

corresponds to the action of G on V ∗i via the contragredient of the irreducible representation. �

The following observation makes the proof of Theorem 4.4 ameanable to the method used to

prove Theorem 2.15. Given d, e ∈ N0, set

Pπ
d,e B

{
p ∈ P : dimR kerπ ∗Dp = d and dimR cokerπ ∗Dp = e

}
.

De�nition 5.5. Set `i B dimKi Vi . Given d ∈ Nm
0

, set

σd B
m∑
j=1

`ikidi .

Proposition 5.6. Let d, e ∈ Nm
0
. Set d B σd and e B σe . ThenPN

d,e is an open and closed subset of
Pπ

d,e .

Proof. Proposition 3.5 and Proposition 5.2 provide G–equivariant isomorphisms

(5.7) Γ(π ∗E) �
m⊕
i=1

Γ(E ⊗ V i ) ⊗Ki V
∗
i and Γ(π ∗F ) �

m⊕
i=1

Γ(F ⊗ V i ) ⊗Ki V
∗
i .

With respect to these we have

(5.8) π ∗Dp =

m⊕
i=1

D
V i
p ⊗ idV ∗i .

13



Therefore, PN
d,e is a subset of Pπ

d,e . In fact, we have

Pπ
d,e =

⋃
σd ′=d
σe ′=e

PN
d ′,e ′ .

Let p0 ∈ P
N
d,e . Choose a neighborhood U of p0 such that for every p ∈ U and i ∈ {1, . . . ,m}

dim kerD
V i
p 6 dim kerD

V i
p0

.

A point p ∈ U lies in Pπ
d,e if and only if equality holds in all these inequalities and, therefore,

p ∈ PN
d,e . This proves that PN

d,e is open in Pπ
d,e . Applying the same reasoning to all other d ′ and

e ′ with σd ′ = d and σe ′ = e proves that PN
d,e is also closed. �

De�nition 5.9. Given p ∈ P, de�ne Lπp : TpP→ HomG (kerπ ∗Dp , cokerπ ∗Dp ) by

Lπp (p̂)s B dpπ
∗D(p̂)s mod imπ ∗Dp

for p̂ ∈ TpP and s ∈ kerπ ∗Dp . The linear map Lπp takes values in HomG (kerπ ∗Dp , cokerπ ∗Dp )

because π ∗Dp is G–equivariant.

Proposition 5.10. For every p ∈ PN
d,e there exits an open neighborhoodU inP and a smooth map

Z : U→ HomG (kerπ ∗Dp , cokerπ ∗Dp ) such that

Pd,e ∩U = Z−1(0) and dpZ = Lπp .

Proof. The proof is almost identical to that of Proposition 2.16. Since (π ∗Dp )p∈P is a family of

G–equivariant operators and the splittings

Γ(π ∗E) = coimπ ∗Dp ⊕ kerπ ∗Dp and Γ(π ∗F ) = imπ ∗Dp ⊕ cokerπ ∗Dp

can be chosen G–invariant, the map Z takes values in HomG (kerπ ∗Dp , cokerπ ∗Dp ). �

Proposition 5.11. Let d, e ∈ Nm
0
. If p ∈ PN

d,e , then

(5.12) HomG (kerπ ∗Dp , cokerπ ∗Dp ) �
m⊕
i=1

HomKi (kerD
V i
p , cokerD

V i
p ).

In particular,

dim HomG (kerπ ∗Dp , cokerπ ∗Dp ) =

m∑
i=1

kidiei .

14



Proof. The group G acts on Γ(π ∗E) and Γ(π ∗F ) by deck transformations, and on V ∗i through the

contragredient of the irreducible representation. The G–equivariant isomorphisms (5.7) induce

G–equivariant isomorphisms

kerπ ∗Dp �
m⊕
i=1

kerD
V i
p ⊗Ki V

∗
i and cokerπ ∗Dp �

m⊕
i=1

cokerD
V i
p ⊗Ki V

∗
i .

It follows that

HomG (kerπ ∗Dp ,π
∗

cokerD∗p )

�
m⊕

i, j=1

HomG (kerD
V i
p ⊗Ki V

∗
i , cokerD

V j
p ⊗Kj V

∗
j )

�
m⊕

i, j=1

(
kerD

V i
p

)∗
⊗Ki HomG (V

∗
i ,V

∗
j ) ⊗Kj cokerD

V j
p

�
m⊕
i=1

HomKi (kerD
V i
p , cokerD

V i
p ).

Here we used Schur’s lemma; that is: HomG (V
∗
i ,V

∗
j ) vanishes if i , j and is equal to Ki if i = j . �

At this stage, all that remains to establish Theorem 4.4 is prove that for every p ∈ PN
d,e the

linear map Lπp : TpP→ HomG (kerπ ∗Dp , cokerπ ∗Dp ) is surjective. Suppose that an element B of

HomG (kerπ ∗Dp , cokerπ ∗Dp ) � HomG (kerπ ∗Dp , kerπ ∗D∗p )

is perpendicular to imLπp ; that is:

〈B,Lπp (p̂)〉 = 0

for every p̂ ∈ TpP. Since (Dp )p∈P is G–equivariantly �exible, for every A ∈ Γ(Hom(E, F )) with

compact support.

〈m(B),π ∗A〉L2 = 0.

The mapm is G–equivariant. Therefore,m(B) is an element of

Γ(Hom(π ∗E,π ∗F ))G = π ∗Γ(Hom(E, F ));

that is,m(B) is the pullback of a section of Hom(E, F ). Consequently,m(B) vanishes. Dp satis�es

the G–equivariant Petri condition; that is, π ∗Dp satis�es Petri’s condition. Therefore, it follows

from Proposition 2.12 that B vanishes. This shows that Lπp is surjective. �

Remark 5.13. By construction, π ∗D maps P into the space of G–equivariant bounded linear

maps L(X ,Y )G . If p ∈ Pπ
d,e , then the �ber of normal bundle of FG

d,e ⊂ L(X ,Y )G at π ∗Dp is

Hom(kerπ ∗Dp , cokerπ ∗Dp )
G

. The above shows that the image of π ∗D intersects FG
d,e transversely

under the hypotheses of Theorem 4.4
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6 Self-adjoint operators

The theory developed here is not needed for

De�nition 6.1. Let k ∈ N0. A family of self-adjoint linear elliptic di�erential operators of order

k consists of a Banach manifold P and a smooth map

D : P→L(W k,2Γ(E),L2Γ(E))

such that for every p ∈ P the operator Dp B D(p) is the extension of a self-adjoint linear elliptic

di�erential operator of order k with smooth coe�cients which are bounded and all of whose

derivatives are bounded.

The theory developed in the earlier sections cannot be applied to D as above, because families

of self-adjoint operators necessarily fail to be �exible in the sense of De�nition 2.5 (except for a

few corner cases). Moreover, requiring Petri’s condition for self-adjoint operators is too strong.

In this section, we adapt the notions of �exibility and Petri’s condition to the case of self-adjoint

operators so that an analogue of Theorem 2.15 holds.

Given a Euclidean vector spaceW , we denote by Sym(W ) the space of self-adjoint endomor-

phisms of W and by S2W the second symmetric power of W . Analogously, given a Euclidean

vector bundle E, we denote by Sym(E) the bundle of self-adjoint endomorphisms of E and by S2E
the second symmetric power of E.

De�nition 6.2. A family of self-adjoint linear elliptic di�erential operators (Dp )p∈P is called self-
adjoint �exible if for every p ∈ P the following holds: for every A ∈ Γ(Sym(E)) with compact

support there is a p̂ ∈ TpP such that

dpD(p̂)s = As mod imDp

for every s ∈ kerDp .

De�nition 6.3. Let D : Γ(E) → Γ(E) be a self-adjoint linear elliptic di�erential operator with

�nite-dimensional L2
kernel. We say that D satis�es the self-adjoint Petri condition if the map

S2
kerD → Γ(S2E)

is injective.

Theorem 6.4. Let (Dp )p∈P be a self-adjoint �exible family of self-adjoint linear elliptic di�erential
operators satisfying the self-adjoint Petri condition Given d ∈ N0, set

Pd B
{
p ∈ P : dim kerDp = d

}
.

ThenPd ⊂ P is a smooth submanifold of codimension

codimPd =

(
d + 1

2

)
.
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Proof. The proof is almost identical to that of Theorem 2.15. Let p ∈ Pd . Denote by Πp the

orthogonal projection onto kerDp . De�ne Lp : TpP→ Sym(kerDp ) by

Lp (p̂)s B ΠpdpD(p̂)s

for p̂ ∈ TpP and s ∈ kerDp . There exits an open neighborhood U of p in P and a smooth map

Z : U→ Sym(kerDp ) such that

Pd,e ∩U = Z−1(0) and dpZ = Lp .

It follows as in the proof of Theorem 2.15 that Lp is surjective at p. Therefore, Pd is a

submanifold of codimension

(d+1

2

)
. �

There also is an analogue of the theory discussed in Section 4. Throughout the remainder of

this section, we let G, N , π : M̃ → M , Vi , V i , Ki , and ki be as in Section 4.

De�nition 6.5. A family of self-adjoint linear elliptic di�erential operators (Dp )p∈P is called G–
equivariantly self-adjoint �exible if for everyp ∈ P the following holds: for everyA ∈ Γ(Sym(E))
with compact support there is a p̂ ∈ TpP such that

dpπ
∗D(p̂)s = (π ∗A)s mod imπ ∗Dp

for every s ∈ kerπ ∗Dp .

De�nition 6.6. Let D : Γ(E) → Γ(F ) be a self-adjoint linear elliptic di�erential operator. We say

that D satis�es the G–equivariant self-adjoint Petri condition if π ∗D satis�es the self-adjoint

Petri condition.

Theorem 6.7. Let (Dp )p∈P be a G–equivariantly self-adjoint �exible family of self-adjoint linear
elliptic di�erential operators satisfying theG–equivariant self-adjoint Petri condition. Given d ∈ Nm

0
,

set
PN

d B
{
p ∈ P : dimKi kerD

V i
p = di

}
.

ThenPN
d,e ⊂ P is a smooth submanifold of codimension

codimPN
d,e =

m∑
i=1

di + ki

(
di
2

)
.

Sketch of proof. The proof is almost identical to that of Theorem 4.4. The key di�erences are that

Lπp , de�ned in De�nition 5.9, now takes values in Sym(kerπ ∗Dp )
G

and the isomorphism from

Proposition 5.11 is replaced by

(Sym(kerπ ∗Dp ))
G �

m⊕
i=1

SymKi (kerD
V i
p ).
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Having made these two adaptations the remainder of the proof follows the argument in Section 5

closely. The codimension formulae follow from

dim SymK(K
d ) = d + k

(
d

2

)
.

with k B dimR K. �

Theorem 6.7 has the following consequence.

Proposition 6.8. Assume the situation of Theorem 6.7 Let V be a Euclidean local system whose
monodromy representation factors through G B π1(M,x0)/N . Let `1, . . . , `m ∈ N0 be such that

π∗R �
m⊕
i=1

V ⊕`ii .

Given d ∈ N0, set

m
V
d B

{
d ∈ Nm

0
:

m∑
i=1

`ikidi = d

}
and

P
V
d B

{
p ∈ P : dim kerD

V
p = d

}
.

The following hold:

1. If mV
d is empty, then so is PV

d .

2. PV
d ⊂ P is a disjoint �nite union of submanifolds of codimension at least

min

d ∈mVd,e

m∑
i=1

di + ki

(
di
2

)
.

Part II

Application to super-rigidity

7 Bryan and Pandharipande’s super-rigidity conjecture

We begin by recalling the notion of super-rigidity as de�ned by Eftekhary [Eft16, Section 1] and

Wendl [Wen16, Section 2.1]. Throughout, let (M, J ,д) be an almost Hermitian 2n–manifold.
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De�nition 7.1. A J–holomorphicmapu : (Σ, j) → (M, J ) is a pair consisting of a closed, connected

Riemann surface (Σ, j) and a smooth map u : Σ→ M satisfying the non-linear Cauchy–Riemann

equation

(7.2)
¯∂J (u, j) B

1

2

(du + J (u) ◦ du ◦ j) = 0.

De�nition 7.3. Let u : (Σ, j) → (M, J ) be a J–holomorphic map. Let ϕ ∈ Di�(Σ) be a di�eomor-

phism. The reparametrization of u by ϕ is the J–holomorphic map u ◦ ϕ−1
: (Σ,ϕ∗j) → (M, J ).

De�nition 7.4. Let u : (Σ, j) → (M, J ) be a J–holomorphic map and let π : (Σ̃, j̃) → (Σ, j) be a

holomorphic map of degree deg(π ) > 2. The composition u ◦ π : (Σ̃, j̃) → (M, J ) is said to be a

multiple cover of u. A J–holomorphic map is simple if it is not constant and not a multiple cover.

Super-rigidity is a condition on the in�nitesimal deformation theory of J–holomorphic maps

up to reparametrization. We will have to brie�y review this theory. Let u : (Σ, j) → (M, J ) be a

non-constant J–holomorphic map. Set

Aut(Σ, j) B {ϕ ∈ Di�(Σ) : ϕ∗j = j} and aut(Σ, j) B {v ∈ Vect(Σ) : Lv j = 0}.

Let S be an Aut(Σ, j)–invariant slice of the Teichmüller space T(Σ) around j. Denote by

du, j ¯∂J : Γ(u∗TM) ⊕ TjS→ Ω0,1(u∗TM)

the linearization of
¯∂J at (u, j) restricted to C∞(Σ,M) ×S. The action of Aut(Σ, j) on C∞(M) ×S

preserves
¯∂−1

J (0). Consequently, there is an inclusion

aut(Σ, j) ↪→ ker du, j ¯∂J .

The space of J–holomorphic maps up to reparametrization has virtual dimension

index du, j ¯∂J − dim aut(Σ, j) = (n − 3)χ (Σ) + 2〈[Σ],u∗c1(M)〉;

see, e.g., [MS12, Section 3; Wen10, Theorem 0; IP18, Proposition 5.1].

De�nition 7.5. The index of a J–holomorphic map u : (Σ, j) → (M, J ) is

(7.6) index(u) B (n − 3)χ (Σ) + 2〈[Σ],u∗c1(M)〉.

The restriction of du, j ¯∂J to Γ(u∗TM) is given by

(7.7) du, J ξ =
1

2

(
∇ξ + J ◦ (∇ξ ) ◦ j + (∇ξ J ) ◦ du ◦ j

)
for ξ ∈ Γ(u∗TM). Here ∇ denotes any torsion-free connection on TM and also the induced

connection on u∗TM . If (u, j) is a J–holomorphic map, then the right-hand side of (7.7) does not
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depend on the choice of ∇; see [MS12, Proposition 3.1.1]. The operator du, J has the property that if

ξ ∈ Γ(TΣ), then du, J (du(ξ )) is a (0, 1)–form taking values in du(TΣ) ⊂ u∗TM . If u is non-constant,

then there is a unique complex subbundle

Tu ⊂ u∗TM

of rank one containing du(TΣ); see [IS99, Section 1.3; Wen10, Section 3.3] and Appendix A. Since

Tu agrees with du(TΣ) outside �nitely many points, du, J maps Γ(Tu) to Ω0,1(Tu).

De�nition 7.8. Let u : (Σ, j) → (M, J ) be a non-constant J–holomorphic map. Set

Nu B u∗TM/Tu .

The normal Cauchy–Riemann operator associated with u is the linear map

d
N
u, J : Γ(Nu) → Ω0,1(Nu)

induced by du, J .

If ũ = u ◦π and u is an immersion, then Nũ = π ∗Nu and Nu = u∗TM/TΣ is the normal bundle

of the immersion u.

Proposition 7.9 ([IS99, Lemma 1.5.1; Wen10, Theorem 3]; see also Appendix A). Let u : (Σ, j) →
(M, J ) be a non-constant J–holomorphic map. Denote by Z (du) the number of critical points of u
counted with multiplicity. The following hold:

1. There is a surjection
ker du, j ¯∂J � ker d

N
u, J

whose kernel contains aut(Σ, j) and has dimension dim aut(Σ, j) + 2Z (du).

2. We have
coker du, j ¯∂J � coker d

N
u, J .

3. We have
index d

N
u, J = index(u) − 2Z (du) 6 index(u).

Geometrically, the additional 2Z (du) dimensions correspond to deforming the location of the

critical points of u without deforming its image u(Σ).

De�nition 7.10. A non-constant J–holomorphic map u is rigid if ker dNu, J = 0.

A multiple cover ũ of u may fail to be rigid, even if u itself is rigid.

De�nition 7.11. A simple J–holomorphic map u : (Σ, j) → (M, J ) is called super-rigid if it is rigid

and all of its multiple covers are rigid.
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If u is super-rigid, then it must have index(u) 6 0. Suppose that M admits a symplectic form ω.

Bryan and Pandharipande [BP01, Section 1.2] conjectured that super-rigidity holds for every simple

J–holomorphic map u with index(u) 6 0 provided J is a generic complex structure J compatible

with ω.

De�nition 7.12. An almost complex structure J is called super-rigid if the following hold:

1. Every simple J–holomorphic map of index zero is super-rigid.

2. Every simple J–holomorphic map has non-negative index.

3. Every simple J–holomorphic map of index zero is an embedding, and every two sim-

ple J–holomorphic maps of index zero either have disjoint images or are related by a

reparametrization.

Remark 7.13. In dimension four, one should weaken (3) and require only that every simple J–
holomorphic map of index zero is an immersion with transverse self-intersections, and that two

such maps are either transverse to one another or are related by reparametrization. However, we

will only be concerned with dimension at least six.

De�nition 7.14. Let (M,ω) be a symplectic manifold. Denote by J(ω) the separable Banach

manifold2 of almost complex structures on M compatible with ω. Denote by J�(ω) the subset of

those almost complex structures J ∈ J(ω) which are super-rigid.

De�nition 7.15. Let X be a topological space. A subset A ⊂ X is called residual if it is the

intersection of countably many dense open subsets.

Conjecture 7.16 (Bryan and Pandharipande). Let (M,ω) be a symplectic manifold. If dimM > 6,
then J�(ω) ⊂ J(ω) is a residual subset.

This conjecture remains open. However, Wendl [Wen16] has made substantial progress towards

proving it.

De�nition 7.17. Let (M,ω) be a symplectic manifold. We denote by JP (ω) the interior of the set

of those almost complex structures J ∈ J(ω) satisfying the following: for every non-constant

J–holomorphic map u : (Σ, j) → (M, J ) of the normal Cauchy–Riemann operator dNu, J satis�es

Petri’s condition. Set

J�,P (ω) B J�(ω) ∩ JP (ω).

Theorem 7.18 (Wendl [Wen16]). Let (M,ω) be a symplectic manifold of dimension at least six. If
dimM > 6, then J�,P (ω) ⊂ JP (ω) is a residual subset.

The remainder of this part of the article is concerned with the proof of Theorem 7.18 as

well as the proof of Theorem 15.2 which deals with the failure of super-rigidity along paths of

almost complex structures. Throughout the next seven sections, (M,ω) is a symplectic manifold

of dimension 2n > 6.

2The cognisant reader will know that the space almost complex structures compatible with ω is naturally a Fréchet

manifold. To obtain a separable Banach we work with Floer’s C∞ε topology; see [Flo88, Section 5; MS12, Remark 3.2.7].

21



8 The universal moduli space of simple J–holomorphic maps

Let us recall some well-known facts about the moduli space of simple J–holomorphic maps.

De�nition 8.1. Let k ∈ Z. Denote by Mk (ω) the space of pairs (J ; [u, j]) consisting of:

• an almost complex structure J ∈ JP (ω), and

• an equivalence class of simple J–holomorphic maps u : (Σ, j) → (M, J ) of index k up to

reparametrization by Di�(Σ).

Theorem 8.2 ([Wen10, Theorem 0; IP18, Proposition 5.1]). Let k ∈ Z. Mk (ω) is a separable Banach
manifold. The projection map Π : Mk (ω) → JP (ω) is a Fredholm map of index k .

Proposition 8.3. There is a residual subset J>0(ω) ⊂ JP (ω) such that for every J ∈ J>0(ω) and
every simple J–holomorphic map u : (Σ, j) → (M, J ) we have index(u) > 0.

This is an immediate consequence of the following fact, which will be used throughout this

article.

Proposition 8.4. Let X and Y be separable Banach manifolds and let f : X → Y be a Fredholm map
of index i . IfW ⊂ X is a submanifold of codimension at least i + 1, then Y\f (W ) is residual.

Proof. Although this is well-known, let us explain the proof. Let NxW = TxX/TxW be the normal

space toW at x ∈W . There are short exact sequences

0→ ker(dx f )/ker(dx f |W ) → NxW → im(dx f )/im(dx f |W ) → 0

and

0→ im(dx f )/im(dx f |W ) → coker(dx f |W ) → coker(dx f ) → 0.

It follows that f |W is a Fredholm map of index

index(dx f |W ) = index(dx f ) − dimNxW ,

which is at most −1. In particular, dim coker(dx f |W ) > 0 for every x ∈ W . Therefore, every

y ∈ f (W ) is critical for f |W . However, by the Sard–Smale Theorem [Sma65] the set of critical

values of f |W is meager, that is, its complement is residual. �

De�nition 8.5. Denote by Mq
0
(ω) the universal moduli space of simple, possibly disconnected

J–holomorphic maps of index zero. Set

W1(ω) B
{
(J ; [u, j]) ∈Mq

0
(ω) : u is not an embedding

}
.

Theorem 8.6 (Oh and Zhu [OZ09, Theorem 1.1] and Ionel and Parker [IP18, Proposition A.4]).
W1(ω) ⊂Mq

0
(ω) has codimension at least 2(n − 2).
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9 Strong �exibility

The following result will imply that the �exibility assumptions of Theorem 2.15 and Theorem 4.4

are satis�ed.

For two complex vector spaces V andW , denote by HomC(V ,W ) the space of C–anti-linear

homomorphisms fromV toW , and similarly for vector bundles. In particular, if E → Σ is a complex

vector bundle, then Λ0,1T ∗Σ ⊗ E = HomC(TΣ,E).

Proposition 9.1 ([Wen16, Lemma 6.1]). Let J ∈ J(ω). Let u : (Σ, j) → (M, J ) be a simple J–
holomorphic map. Consider the set of embedded points

U B {x ∈ Σ : u−1(u(x)) = {x} and dxu , 0}.

For every
A ∈ Γ(Hom(Nu,HomC(TΣ,Nu))

with support inU there exists a 1–parameter family (Jt )t ∈R ⊂ J(ω) such that:

1. u is J–holomorphic with respect to all Jt , and

2. d

dt

��
t=0
dNu, Jt

= A.

Proof. The tangent space to J(ω) at J is given by

TJJ =
{
Ĵ ∈ Γ(End(TM)) : Ĵ J + J Ĵ = 0 and ω( Ĵ ·, ·) + ω(·, Ĵ ·) = 0

}
.

This means that TJJ consists of anti-linear endomorphisms which are skew-adjoint with respect

to ω. For x ∈ U , we can write TxM = TxΣ ⊕ NxΣ. Given ĵ ∈ HomC(TΣ,Nu), denote by ĵ† its

adjoint with respect to ω and set

Ĵ B

(
0 −ĵ†

ĵ 0

)
.

By construction Ĵ J + J Ĵ = 0 and ω( Ĵ ·, ·) + ω(·, Ĵ ·) = 0.

Given A ∈ Γ(Hom(Nu,HomC(TΣ,Nu)) with support in U , pick (Jt )t ∈R ⊂ J(ω) such that

Jt |u(Σ) = J for every t and such that for every ξ ∈ Γ(Nu) we have

1

2

∇ξ
d

dt

����
t=0

Jt =

(
0 (A(ξ )j)†

−A(ξ )j 0

)
.

By construction u is J–holomorphic with respect to all Jt . It follows from (7.7) that

d

dt

����
t=0

d
N
u, Jt = A. �
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10 Rigidity of unbranched covers

As a warm-up, let us explain how to prove that for a generic J ∈ J(ω) all J–holomorphic maps

of the form u ◦ π with u : (Σ, j) → (M, J ) a simple J–holomorphic map with index(u) = 0 and

π : (Σ̃, j̃) → (Σ, j) an unbranched holomorphic covering map are rigid.

De�nition 10.1. Let Σ and Σ̃ be closed, connected surfaces. Let π : Σ̃ → Σ be a covering map.

Denote by MΣ
0
(ω) the component of M0(ω) consisting of those pairs (J ; [u, j]) with the domain of

u being Σ. Set

Wπ (ω) B
{
(J ; [u, j]) ∈MΣ

0
(ω) : π ∗u is not rigid

}
.

Proposition 10.2. Wπ (ω) ⊂MΣ
0
(ω)\W1(ω) has codimension at least one.

Denote by Π : MΣ
0
(ω) → J(ω) the projection map. From Proposition 8.4 it follows that

Π(Wπ (ω)) ⊂ JP (ω) is meager, that is, its complement is residual. Since there are only countably

many closed, connected surfaces and only countably many covering maps between closed, con-

nected surfaces, the set of J ∈ JP (ω) such that any J–holomorphic map of the form u ◦ π as above

is rigid is residual.

Proof of Proposition 10.2. Set

P BMΣ
0
(ω)\W1(ω).

De�ne Hilbert space bundles X and Y over P with

X(J ;[u, j]) =W
1,2Γ(Nu) and Y(J ;[u, j]) = L2Ω0,1(Σ,Nu).

De�ne

d
N

: P→L(X,Y)

by

d
N (J ; [u, j]) B dNu, J .

In De�nition 2.1 we assumed E and F to be �xed. We can generalize this to E and F varying with

p ∈ P. In fact, this generalization is easily reduced to the situation considered in De�nition 2.1 by

locally trivializing the dependence of E and F on p ∈ P. The equivariant notion of �exibility is not

a�ected by changing the choice of local trivialization. Petri’s condition is manifestly independent

of the choice of trivialization. Having explained this, we will consider (dp )p∈P as a family of linear

elliptic di�erential operators in this slightly generalized sense.

By Proposition 9.1, (dp )p∈P is strongly �exible and, therefore, G–equivariantly �exible for

every G.

We have

i B index d
N
u◦π , J = deg(π ) · index d

N
u, J 6 deg(π ) · index(u) = 0.

24



Therefore, it follows from Proposition 3.5 and Proposition 6.8 that

Wπ (ω) =
∞⋃
d=1

P
π∗R
d,d−i

has codimension at least one. �

There are two essential di�culties one needs to overcome to deal with holomorphic maps

π : (Σ̃, j̃) → (Σ, j) which are not covering maps:

1. Proposition 3.5 and Proposition 6.8 do not apply directly to branched covers.

2. These maps come in positive dimensional families whereas there are only countably many

covering maps.

The upcoming three subsections will provide us with a framework to deal with both of these

issues.

11 Cauchy–Riemann operators on punctured Riemann surfaces

The following discussion will allow us to remove isolated points from branched covers. In particular,

it allows us to remove preimages of branch-points.

Set

D B {z ∈ C : |z | < 1} and ÛD B D\{0}.

De�ne a di�eomorphismψ : (0,∞) × S1 → ÛD by

ψ (t ,α) B e−(t+iα ).

De�nition 11.1. Let Σ be a closed, connected Riemann surface. Let Z ⊂ Σ be a �nite set and set

ÛΣ B Σ\Z .

For each x ∈ Z , let ϕx : D → Σ be a chart such that ϕx (0) = x and ϕx ( ÛD) ∩ Z = �. Choose a

Riemannian metric дcyl and a smooth function τ : ÛΣ→ [0,∞) such that for every x ∈ Z

ψ ∗ϕ∗xдcyl = (dt)
2 + (dα)2 and τ ◦ ϕx ◦ψ (t ,α) = t .

De�nition 11.2. Let ÛE be a Euclidean vector bundle over ÛΣ together with a metric connection. For

any compactly supported section s ∈ Γ( ÛE) de�ne

‖s ‖2L2

cyl

B

ˆ
ÛΣ
|s |2 volд

cyl
and ‖s‖2

W 1,2
cyl

B ‖s‖2L2

cyl

+ ‖∇s‖2L2

cyl

.
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Denote byW 1,2
cyl
( ÛE) the completion of the space of compactly supported sections of ÛE with respect

to ‖·‖W 1,2
cyl

. Denote by L2

cyl
( ÛE) the completion of the space of compactly supported sections of ÛE

with respect to ‖·‖L2

cyl

.

We employ the following convention: for a weight function w and a normed space of sections

X (such as L2

cyl
( ÛE) orW 1,2

cyl
( ÛE)) we denote by wX the space of sections of the form ws for s ∈ X

equipped with the norm ‖ws ‖ B ‖s ‖X .

Proposition 11.3. Let E be a Hermitian vector bundle over Σ together with a compatible connection. Let
dE : Γ(E) → Ω0,1(Σ,E) be a real Cauchy–Riemann operator. Set ÛE B E |Σ\Z . Denote by d ÛE : Γ( ÛE) →
Ω0,1(Σ, ÛE) the restriction of dE . The following hold:

1. For every δ ∈ R the operator d ÛE extends to a bounded linear operator

d ÛE,δ : eδτW 1,2
cyl

Γ( ÛE) → eδτL2Ω0,1
cyl
( ÛΣ, ÛE).

2. The operator d ÛE,δ is Fredholm if and only if δ < Z.

3. If δ ∈ (0, 1), then

ker d ÛE,δ � ker dE and coker d ÛE,δ � coker dE .

Proof. For every x ∈ Z identify ϕx (D) with D and choose a trivialization E |D � C⊕r . In these

trivializations we can write dE as
¯∂ + adz̄ with a ∈ C∞(D,EndR(Cr )). Pulling back via ψ and

identifying Ω0,1((0,∞) × S1,Cn−1) with C∞((0,∞) × S1,Cn−1), this becomes

(11.4) ∂t + i∂α + ã

with ã and all of its derivatives decaying exponentially as t goes to in�nity. Since

τ ◦ ϕx ◦ψ (t ,α) = t ,

we have

‖e−δτ d ÛEs‖L2

cyl

. ‖e−δτ s‖W 1,2
cyl

.

The above also proves that d ÛE is asymptotically translation invariant and thus the standard

theory for such operators applies; see, e.g., [LM85; Don02, Section 3; HHN15, Section 2.1]. According

to this theory, d ÛE,δ is Fredholm if and only if −δ < spec(i∂α ) = Z.

It remains to prove (3). Fix δ ∈ (0, 1). If s is a smooth section of E over Σ, then

‖e−δτ s‖W 1,2
cyl

< ∞.

Therefore, ker dE ⊂ ker d ÛE,δ . Conversely, if s ∈ ker d ÛE,δ , then it is smooth on ÛΣ, satis�es dEs = 0

on ÛΣ, and around every puncture x obeys an estimate of the form

|s |(ϕx (z)) . |z |
−δ .

26



This implies that s is in L2
and satis�es dEs = 0 weakly on all of Σ. Therefore, s extends smoothly

over Z and this extension lies in ker dE . This proves that ker dE = ker d ÛE,δ .

The isomorphism of the cokernels follows by a similar argument. While the metric дcyl does

not extend to Σ, it is conformal to a metric д which does. Denote by d∗E the formal adjoint of dE
with respect to д and by d∗

ÛE
the formal adjoint of d ÛE with respect to дcyl. In fact, since the L2

inner

product on 1–forms on a Riemann surface depends only on the conformal class of the metric, we

have

d
∗
E = d

∗
ÛE

on (0, 1)–forms compactly supported in ÛΣ. The above reasoning shows that, for every δ ∈ R, d∗
ÛE

extends to a bounded linear operator d∗
ÛE,δ

: eδτW 1,2
cyl

Ω0,1( ÛΣ, ÛE) → eδτL2

cyl
Γ( ÛE). Since dE and d ÛE,δ

are Fredholm and by elliptic regularity, coker dE � ker d∗E and coker dE,δ � ker d∗
ÛE,−δ

. If α ∈ ker d∗E ,

then |α |д
cyl
. e−τ ; hence,

‖eδτα ‖L2

cyl

< ∞.

It follows that α ∈ ker d∗
ÛE,−δ

. Therefore, ker d∗E ⊂ ker d∗
ÛE,−δ

. Conversely, if α ∈ ker d∗
ÛE,−δ

, then it is

smooth on ÛΣ, satis�es d∗Eα = 0 on ÛΣ, and

|α |(ϕx (z)) . |z |
δ−1.

The factor |z |−1
arises from relating the norm of a 1–form in Euclidean coordinates to its norm

in cylindrical coordinates. This implies that α is in L2
and satis�es d∗Eα = 0 weakly on all of

Σ. Therefore, α extends smoothly over Z and this extension lies in ker d∗E . This proves that

ker d∗E = ker d∗
ÛE,−δ

. �

Proposition 11.5. Assume the situation of Proposition 11.3. Let V be a Euclidean local system on ÛΣ.
For every x ∈ Z denote by µx ∈ O(V ) the monodromy of V around x . The following hold:

1. For every δ ∈ R the operator dV
ÛE
extends to a bounded linear operator

d
V
ÛE,δ

: eδτW 1,2
cyl

Γ( ÛE ⊗ V ) → eδτL2Ω0,1
cyl
( ÛΣ, ÛE ⊗ V ).

2. The operator dV
ÛE,δ

is Fredholm if and only if for all x ∈ Z we have e−2πiδ < spec(µx ).

3. Set
δ0 B min{δ ∈ (0, 1] : e−2πiδ ∈ spec(µx ) for any x ∈ Z }.

If δ ∈ (0,δ0), then

index d
V
E,δ = rkV · index dE − rkE ·

∑
x ∈Z

dim(V /V µx ).

Here V µx denotes the µx–invariant subspace of V .

27



Proof. Arguing as in the proof of Proposition 11.3 we can write d
V
ÛE

near x ∈ Z as

∂t + i∇
V x
α + ã

acting on E ⊗ V . Here V x denotes the local system over S1
obtained by pulling back V via ϕx ◦ψ

and then restricting to an S1
factor in (0,∞) × S1

. This immediately implies (1). Since

spec(i∇
V x
α ) =

{
λ ∈ R : e2πiλ ∈ spec(µx )

}
,

assertion (2) follows as well.

Wendl [Wen16, Section 4] gives a proof of the index formula (3) using the Riemann–Roch

theorem for punctured surfaces developed by Schwarz [Sch95, Section 3.3]. In order to keep

the present article self-contained we provide a proof using Kawasaki’s orbifold Riemann–Roch

theorem [Kaw79].

For every x ∈ Z the monodromy of V around x factors through a cyclic group Z`x . Denote by

Σ̂ the orbifold whose underlying topological space is Σ and with orbifold points precisely at the

points of Z and with isotropy group at x given by Z`x . The local system V over ÛΣ extends to a

local system V̂ over Σ̂. The reader will have no trouble to verify that Proposition 11.3(3) extends to

Σ replaced with Σ̂ and E replaced with E ⊗ V̂ provided we impose that δ ∈ (0,δ0). This implies that

index d
V
ÛE,δ
= index dE⊗V̂ .

The latter agrees with the index of
¯∂E⊗V̂ .

The orbifold Riemann–Roch theorem asserts that

(11.6) index
¯∂E⊗V̂ =

ˆ
ΛΣ̂

tdΛΣ̂(TΣ)chΛΣ̂(E ⊗ V̂ ).

Here ΛΣ̂ is the inertia orbifold. In the situation at hand it is given by

ΛΣ̂ = Σ̂ t {(x ,д) : x ∈ Z and д , 1 ∈ Z`x }

with the points (x ,д) being isolated and having isotropy group Z`x . Furthermore, the di�erential

form tdΛΣ̂(TΣ)chΛΣ̂(E ⊗ V̂ ) agrees with the product of the usual Chern–Weil representatives of

the Todd class and the Chern character on Σ̂, and with

1

`x
tdд(TxΣ)chд(Ex ⊗ V )

on (x ,д). Here tdд and chд denote the equivariant Todd class and the equivariant Chern character,

respectively. In light of the above discussion the orbifold Riemann–Roch theorem becomes

index
¯∂E⊗V̂ =

ˆ
Σ̂

td(TΣ)ch(E ⊗ V̂ ) + rk(E)
∑
x ∈Z

1

`x

∑
д,1∈Z`x

tdд(TxΣ)chд(V ).
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Since V̂ is �at, the �rst summand is

rkV ·

ˆ
Σ

td(TΣ)ch(E) = rkV · index
¯∂E

= rkV · index dE .

To evaluate the contribution of x ∈ Z to the second summand observe that the index formula for

the local system V restricted to the orbifold [{x}/Z`x ] reads

dimV µx = index
¯∂V̂ x

=

ˆ
{x }

td(T {x})ch(V̂ x ) +
1

`x

∑
д,1∈Z`x

tdд(TxΣ)chд(Ex ⊗ V ).

The �rst term on the right-hand side is simply dimV . Therefore,

1

`x

∑
д,1∈Z`x

tdд(TxΣ)chд(Ex ⊗ V ) = dimV µx − dimV

= − dim(V /V µx ).

This �nishes the proof of the index formula. �

Remark 11.7. Instead of working with punctured Riemann surfaces we could also work with orbifold

Riemann surfaces. Indeed, if π : Σ̃ → Σ is a branched cover, then π∗R is not a local system on

Σ but it is a local system on an orbifold whose underlying topological space is Σ but which has

non-trivial isotropy groups over the branching locus.

12 From branched covers to local systems

The following allows us to detect the failure of super-rigidity using local systems over punctured

Riemann surfaces.

Proposition 12.1. Letu : (Σ, j) → (M, J ) be a non-constant J–holomorphic map. If π : (Σ̃, j̃) → (Σ, j)
is a non-constant holomorphic map such that u ◦ π is not rigid, there exists a �nite set Z ⊂ Σ and
an irreducible Euclidean local system V on ÛΣ = Σ\Z whose monodromy representation has kernel of
�nite index such that the following holds. Set Ûu B u | ÛΣ. For δ ∈ R denote by

d
N ,V
Ûu,δ : W 1,2

cyl
Γ(N Ûu ⊗ V ) → L2

cyl
Ω0,1( ÛΣ,N Ûu ⊗ V )

the extension of dN ,V
Ûu . For 0 < δ � 1 the operator dN ,V

Ûu,δ has a non-trivial kernel.
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Proof. Let Z be the branching locus of π . Set

ũ B u ◦ π , Z̃ B π−1(Z ), Û̃Σ B Σ̃\Z̃ , Ûπ B π | Û̃Σ, and
Û̃u B ũ | Û̃Σ.

For every x ∈ Z̃ choose charts
˜ϕx : D → Σ̃ and ϕx : D → Σ such that

˜ϕx (0) = x ,
˜ϕx ( ÛD) ∩ Z̃ = �,

and

π ( ˜ϕx (z)) = ϕx (z
rx )

with rx ∈ N0 denoting the rami�cation index of x . Let дcyl be a Riemannian metric on ÛΣ and let

τ : ÛΣ→ [0,∞) be a smooth function such that

ψ ∗ϕ∗xдcyl = (dt)
2 + (dα)2 and τ ◦ ϕx ◦ψ (t ,α) = t .

Set

д̃cyl B Ûπ
∗дcyl and τ̃ B t ◦ Ûπ .

These satisfy

ψ ∗ ˜ϕ∗x д̃cyl = rx ·
(
(dt)2 + (dα)2

)
and τ ◦ ϕx ◦ψ (t ,α) = rx · t .

By Proposition 11.3 for 0 < δ 6 min{1/rx : x ∈ Z } we have

ker d Û̃u,δ � ker dũ and coker d Û̃u,δ � coker dũ .

Set V B Ûπ∗R. With respect to the isomorphisms

Ûπ∗ : Γ(N Û̃u) � Γ(N Ûu ⊗ V ) and Ûπ∗ : Ω0,1(
Û̃Σ,N Û̃u) � L2Ω0,1( ÛΣ,N Ûu ⊗ V )

from Proposition 3.5, we have

‖ Ûπ∗s ‖W 1,2
cyl

= ‖s‖W 1,2
cyl

and ‖ Ûπ ∗s‖L2

cyl

= ‖s‖L2

cyl

as well as

(12.2) d
N ,V
Ûu,δ = Ûπ∗ ◦ d

N
ũ,δ ◦ Ûπ

−1

∗ .

It follows that if dNũ has a non-trivial kernel, then so does d
N ,V
Ûu,δ .

Decompose V into irreducible local systems

V �
m⊕
i=1

V ⊕`ii .

The operator d
N ,V
Ûu,δ decomposes accordingly as

d
N ,V
Ûu,δ =

m⊕
i=1

(
d
N ,V i
Ûu,δ

) ⊕`i
.

Consequently, if dNũ has a non-trivial kernel, then the same must hold for d
N ,V i
Ûu,δ for at least one

i ∈ {1, . . . ,m}. �
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13 Local systems over punctured Riemann surfaces

We determine the codimensions of the loci at which the phenomenon described in Proposition 12.1

occurs. The this the crucial ingredient in the proof of Theorem 7.18.

De�nition 13.1. Let Σ be a closed, connected surface and let Z ⊂ Σ be a �nite subset. Let

N /π1(Σ\Z ,x0) be a normal subgroup with �nite index and setG B π1(Σ\Z ,x0)/N . Let K be either

R, C, or H. Denote by ML
Σ,Z
K,N (ω) the set of equivalence classes of triples (J ;u, j;V ) consisting of:

• an almost complex structure J ∈ J(ω),

• a embedded J–holomorphic map u : (Σ, j) → (M, J ) of index zero, and

• an irreducible Euclidean local system V on Σ\Z which does not extend across any x ∈ Z
and whose monodromy representation factors through G and has commuting algebra K

subject to the constraint

J ∈ JP (ω).

The equivalence relation on the triples (J ;u, j;V ) is generated by reparametrization by Di�(Σ,Z ) B
{ϕ ∈ Di�(Σ) : ϕ |Z = idZ } and isomorphisms of local local systems. We set

ML
Σ,Z
K (ω) B

∐
N

ML
Σ,Z
K,N (ω).

Set r B #Z . The projection map ML
Σ,Z
K (ω) → MΣ

0
(ω) given by (J ; [u, j;V ]) 7→ (J , [u, j]) is

a submersion with 2r–dimensional �bers. In light of Proposition 12.1, the subsets de�ned in the

following are responsible for the failure of super-rigidity.

De�nition 13.2. In the situation of De�nition 13.1, for every K ∈ {R,CH}, N , and d ∈ N0 we de�ne

W
Σ,Z
K,N ,d (ω) B

{
(J ; [u, j;V ]) ∈ML

Σ,Z
K,N : dimK ker d

N ,V
Ûu,δ = d for 0 < δ � 1

}
,

and

W
Σ,Z
K,d (ω) B

∐
N

W
Σ,Z
K,N ,d (ω).

As we will see shortly, the subsets de�ned in the following are the most typical cause of the

failure of super-rigidity. They do not play a role in the proof of Theorem 7.18, but are of crucial

importance in Section 15.

De�nition 13.3. In the situation of De�nition 13.1, denote by

W
Σ,Z
R,N ,1,•(ω) ⊂W

Σ,Z
R,N ,1(ω)

the subset consisting of all (J ; [u, j;V ]) such that:
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1. u is an immersion,

2. dim(V /V µx ) = 1 for every x ∈ Z , and

3. every other local system over Σ\Z whose monodromy representation factors through G
extends to Σ.

Set

W
Σ,Z
R,1,•(ω) B

∐
N

W
Σ,Z
R,N ,1(ω).

Proposition 13.4. Assume the situation of De�nition 13.1. Set k B dimR K. For every d ∈ N0 the
following hold:

1. The subset WΣ,Z
K,d (ω) ⊂ML

Σ,Z
K (ω) has codimension at least k(d + (n − 1)r ).

2. The subset WΣ,Z
R,1,•(ω) ⊂ML

Σ,Z
R,N (ω) is smooth and has codimension (1 + (n − 1)r ).

3. The subset WΣ,Z
R,1 (ω)\W

Σ,Z
R,1,•(ω) ⊂ML

Σ,Z
R,N (ω) has codimension greater than (1 + (n − 1)r ).

Proof. Set

P BML
Σ,Z
K,N (ω).

De�ne Hilbert space bundles X and Y over P with �bers

X(J ;[u, j ;V ]) = eδτW 1,2
cyl

Γ(N Ûu) and Y(J ;[u, j ;V ]) = eδτL2Ω0,1
cyl
( ÛΣ,N Ûu)

with ÛΣ B Σ\Z and Ûu B u | ÛZ . Let L(X,Y) be a Banach space bundle over P whose �bers

are the spaces of bounded linear operators between the �bers of X and Y. De�ne the section

dN : P→L(X,Y) by

d
N
(J ;[u, j ;V ]) B d

N
Ûu,δ .

In De�nition 2.1 we assumed D to be a map into L(W k,2Γ(E),L2Γ(F )). However, this can

generalized to cover the situation at hand. In the situation above the Sobolev spaces are weighted

and E and F depend on p ∈ P. The weights are insubstantial because in light of the commutative

diagram

W 1,2
cyl

Γ(N Ûu) L2Ω0,1
cyl
( ÛΣ,N Ûu)

eδτW 1,2
cyl

Γ(N Ûu) eδτL2Ω0,1
cyl
( ÛΣ,N Ûu)

eδτ

e−δτ dN
Ûu,δ e

δτ

eδτ

dN
Ûu,δ

we might as well work with e−δτ dN
Ûu,δe

δτ
acting between unweighted spaces. As discussed in the

proof of Proposition 10.2, the dependence of E and F on p ∈ P also is not an issue, because we can

locally trivialize the dependence on p ∈ P. The notion of equivariant �exibility is independent
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of the choice of trivialization. The Petri conditions are manifestly independent of the choice

of trivialization. Having explained this, we will consider (dNp )p∈P as a family of linear elliptic

di�erential operators in this slightly generalized sense.

By Proposition 9.1, (dNp )p∈P is strongly �exible and, therefore, G–equivariantly �exible for

every G. By hypothesis, dNp satis�es Petri’s condition for every p ∈ P. Therefore, we can apply

Theorem 4.4.

Since V
1
= V does not extend over any x ∈ Z , the subspaces V

µx
1
⊂ V1 de�ned in Proposi-

tion 11.5 must be non-trivial K1–linear subspaces. Because the normal bundle N Ûu has rank n − 1

and Z has precisely r elements, it follows from Proposition 11.5 (3) that

index d
N ,V

1

u,δ 6 −(n − 1)k1r

and index d
N ,V i
u,δ 6 0 for i ∈ {2, . . . ,m}. For every (d, e) ∈ Nm

0
× Nm

0
with Pd,e , � we must have

index d
N ,V i
u,δ = ki (di − ei ).

In particular,

e1 > d1 + (n − 1)r

and ei > di for i ∈ {2, . . . ,m}. Consequently, if d1 = d , then

(13.5) codimPd,e >
m∑
i=1

kidiei >
m∑
i=1

kiei > k(d + (n − 1)r ).

This directly implies (1). If K = R and d = 1, then the inequality (13.5) is sharp precisely when:

1. u is an immersion,

2. dim(V /V µ+x ) = 1 for every x ∈ Z , and

3. V i extends to Σ for every i ∈ {1, . . . ,m}.

This implies (2) and (3). �

14 Proof of Theorem 7.18

We want to show that J�,P (ω), the set of super-rigid almost complex structures, is residual in

J(ω). This will follow from combining the results of the preceding sections with Proposition 8.4.

For every д, r ∈ N0, �x a closed, connected surface Σд of genus д and a subset Zд,r ⊂ Σд with

precisely r elements. Abbreviate

M
д
0
(ω) BM

Σд
0
(ω), ML

д,r
K (ω) BML

Σд,Zд,r
K (ω), and W

д,r
K,d (ω) BW

Σд,Zд,r
K,d (ω).
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Denote by Π : Mq
0
(ω) → JP (ω) and Π : ML

д
K,r → JP (ω) the projections to JP (ω). These are

Fredholm maps of index 0 and 2r , respectively.

Recall from De�nition 7.12 that super-rigidity consists of three conditions (1), (2), and (3). Set

W>1(ω) B
⋃

д,r,d ∈N0

K∈{R,C,H}

W
д,r
K,d+1
(ω).

By Proposition 12.1, Π(W>1(ω)) is the set of those complex structures for which (1) fails. By

de�nition, JP (ω)\J>0(ω) and Π(W1(ω)) are the sets of almost complex structures for which (2)

and (3) fail, respectively. Consequently, the set JP (ω)\J�,P (ω) of almost complex structures which

are fail to be super-rigid satisfy

JP (ω)\J�,P (ω) ⊂ JP (ω)\J>0(ω) ∪ Π(W1(ω)) ∪ Π(W>1(ω)).

Each of the sets in this union is meager:

1. By Proposition 8.3, J>0(ω) is residual.

2. By Theorem 8.6, W1(ω) has codimension 2(n − 2) > 2. Hence, by Proposition 8.4 its image

Π(W1(ω)) under the index zero Fredholm map Π is meager.

3. By Proposition 13.4, W
д,r
K,d+1
(ω) ⊂ML

д,r
K has codimension at least

k(d + (n − 1)r ) > 2r + 1;

hence, its image under Π is meager.

This proves that J�(ω) is residual. �

15 Super-rigidity along paths of almost complex structures

Even though super-rigidity holds for a generic almost complex structure, it may fail for some almost

complex structures along a generic path. The purpose of this section is to prove Theorem 15.2,

which describes this failure in detail.

Let M be a manifold and let ω = (ωt )t ∈[0,1] be a path symplectic structures. Set

JP (ω) B
⋃

t ∈[0,1]

JP (ωt ) and M0(ω) B
⋃

t ∈[0,1]

M0(ωt ).

JP (ω) is a separable Banach manifold. The proof of Theorem 8.2 shows that M0(ω) is a separable

Banach manifold and Π : M0(ω) → JP (ω) is a Fredholm map of index zero. Similarly, in the

notation of Section 14,

ML
д,r
K (ω) B

⋃
t ∈[0,1]

ML
д,r
K (ωt )
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is a separable Banach manifold and Π : ML
д,r
K → JP (ω) is a Fredholm map of index 2r .

Fix J0 ∈ J�,P (ω0) and J1 ∈ J�,P (ω1). Denote by JP = JP (J0, J1;ω) the separable Banach

manifold of paths of almost complex structures (Jt )t ∈[0,1] from J0 to J1 with Jt ∈ JP (ωt ). De�ne

the evaluation map ev : JP × [0, 1] → JP (ω) by

ev

(
(Jt )t ∈[0,1], t?

)
B Jt? .

Denote by M0 = M0(J0, J1;ω) the space of triples consisting of a path of almost complex

structures (Jt )t ∈[0,1] ∈ JP , t ∈ [0, 1], and [ut , jt ]t ∈[0,1] ∈ M0(Jt ) B Π−1(Jt ) ⊂ M(ω). In other

words, M0 is the �bered product

M0 = (JP × [0, 1]) ×JP (ω)M(ω).

Similarly, de�ne

ML
д,r
K = (JP × [0, 1]) ×JP (ω)ML

д,r
K (ω).

By slight abuse of notation, we also denote by

Π : M0 → JP and Π : ML
д,r
K → JP .

the canonical projection maps. The following result equips M0 and ML
д,r
K with the structure

of a separable Banach manifold and exhibits Π as a Fredholm map of index one and index 2r + 1,

respectively.

Proposition 15.1. Let X , Y , Z be Banach manifolds. Let f : X → Z be a smooth map and let
д : Y → Z be a submersion.

1. The �bered product X ×Z Y , de�ned by

X ×Z Y = д∗Y B {(x ,y) ∈ X × Y : f (x) = д(y)}

is a smooth submanifold of X × Y .

2. If f : X → Z is a Fredholm map of index i , then the projection map

πY : X ×Z Y → Y

is a Fredholm map of index i as well.

3. IfW ⊂ X is a submanifold of codimension d , thenW ×Z Y ⊂ X ×Z Y is a submanifold of
codimension d as well.

Proof. Denote the diagonal in Y × Y by ∆. By de�nition,

X ×Z Y = (f × д)−1(∆).
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Since д is a submersion, the map f × д is transverse to ∆. It thus follows from the Regular Value

Theorem that X ×Z Y is smooth. This proves (1).

By de�nition, we have

T(x,y)X ×Z Y =
{
(x̂ , ŷ) ∈ TxX ⊕ TyY : dx f (x̂) = dyд(ŷ)

}
.

Consequently,

ker d(x,y)πY =
{
(x̂ , 0) ∈ TxX ⊕ TyY : dx f (x̂) = 0

}
� ker dx f

and

im d(x,y)πY =
{
ŷ ∈ TyY : dyд(ŷ) ∈ im dx f

}
.

The latter gives rise to the following commutative diagram in which all rows and all columns are

exact:

ker dyд ker dyд

im d(x,y)πY TyY coker d(x,y)πY

im dx f Tf (x )Z coker dx f .

=

dyд dyд

A diagram chase constructs the dashed linear map making the bottom right square commutative.

A further diagram chase shows that this linear maps is an isomorphism. (Alternatively, one can

quotient im d(x,y)πY and TyY by ker dyд. The maps induced by dyд then become isomorphisms

and it follows that the cokernels are isomorphic.) This proves (2).

The argument used to prove (1) shows thatW ×Z Y is a smooth submanifold of X ×Z Y . To

determine its codimension, consider the following diagram in which all rows and all columns are

exact:

T(x,y)W ×Z Y TxW ⊕ TyY Tf (x )Z

T(x,y)X ×Z Y TxX ⊕ TyY Tf (x )Z

N(x,y)W ×Z Y NxW .

=

A diagram chase constructs the dashed linear map making the bottom left square commutative.

(Alternatively, replaceTxW ⊕TyY by the kernel of the map toTf (x )Z and do the same forTxX ⊕TyY .)

A further diagram chase shows that this linear maps is an isomorphism. This proves (3). �

Theorem 15.2 (cf. [Wen16, Section 2.4]). LetM be a manifold of dimension dimM = 2n > 6. Given
a path of symplectic structuresω = (ωt )t ∈[0,1], J0 ∈ J�,P (ω0), and J1 ∈ J�,P (ω1), there is a residual
subset J�,P ⊂ JP (J0, J1;ω) such that for every J = (Jt )t ∈[0,1] ∈ J�,P the following hold:
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1. The path J is a regular value of Π : M0 → JP . In particular,

M0 (J) B Π−1(J)

is a 1–dimensional manifold with boundary.

2. For every t ∈ [0, 1] every Jt–holomorphic map of index zero is embedded, and every two
simple Jt–holomorphic maps of index zero either have disjoint images or are related by a
reparametrization.

3. Let д, r ∈ N0, and (Jt , t , [u, j;V ]) ∈ML
д,r
K (J) B Π−1(J). If K = R, then

dim ker d
N ,V
Ûu,δ 6 1 for 0 < δ � 1.

If K ∈ {C,H}, then
dim ker d

N ,V
Ûu,δ = 0 for 0 < δ � 1.

4. For every д, r ∈ N0, the subset

W
д,r
R,1 (J) B

{
(t , [u, j;V ]) ∈ [0, 1] ×ML

д,r
R (J) : dim ker d

N ,V
Ûu,δ = 1 for δ � 1

}
is a smooth submanifold of codimension 2r + 1.

If dimM > 8 and r > 0, thenW
д,r
R,1 (J) is empty.

If (Jt ; [u, j;V ]) ∈W
д,r
R,1 (J), then:

(a) dim(V /V µ+x ) = 1 for every x ∈ Z , and

(b) any irreducible local system on Σ\Z which is isomorphic to V but whose monodromy
representation factors through the same quotient as that of V extends to Σ.

Proof. Denote by Jreg

the set of regular values of Π.

De�ne Mq
0
(ω) and Π : Mq

0
(ω) → JP (ω) in the obvious way. Set

W1(ω) =
⋃

t ∈[0,1]

W1(ωt ) ⊂Mq
0
(ω).

By Theorem 8.6, W1(ω) ⊂Mq
0
(ω) has codimension at least two. Therefore, ev

∗W1(ω) ⊂M0 has

codimension two in according to Proposition 15.1. Since Π : M0 → JP is a Fredholm map of

index one, it follows from Proposition 8.4 that

J1 B Π(ev
∗W1(ω))

is meager.
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De�ne W
д,r
K,d (ω), and W

д,r
R,1,•(ω) in the obvious way. Set

J
д,r
K,r,d B Π(ev

∗W
д,r
K,d (ω)) ⊂ JP , and

J
д,r
R,1,◦ B Π

(
ev
∗
(
W

д,r
R,1 (ω)\W

д,r
R,1,•(ω)

))
⊂ JP .

Since Π : ML
д,r
K → JP is a Fredholm map of index 2r + 1 and by Proposition 13.4, J

д,r
K,1,◦ is

meager; moreover, if d > 2, or d = 1 and K , R, or d = 1, r > 1, and n > 4, then J
д
K,r,d is meager.

For n = 3, de�ne J�,P ⊂ Jreg

by

Jreg\J�,P B J1 ∪
⋃

r,d,д∈N0

J
д,r
R,d+2

∪
⋃

r,d,д∈N0

K∈{C,H}

J
д,r
K,d+1

∪
⋃

r,д∈N0

J
д,r
R,1,◦.

For n > 4, de�ne J� ⊂ Jreg

by

Jreg\J�,P B J1 ∪
⋃

r,d,д∈N0

J
д,r
R,d+2

∪
⋃

r,d,д∈N0

K∈{C,H}

J
д,r
K,d+1

∪
⋃

r,д∈N0

K∈{R,C,H}

J
д,r+1

K,1 ∪
⋃
д∈N0

J
д,0
R,1,◦.

By construction J�,P is a residual subset of JP and every (Jt )t ∈[0,1] ∈ J�,P satis�es (1), (2), (3),

and (4). �

A The normal Cauchy–Riemann operator

The normal Cauchy–Riemann operator for embedded J–holomorphic maps can be traced back to

the work of Gromov [Gro85, 2.1.B]. It was observed by Ivashkovich and Shevchishin [IS99, Section

1.3], and Wendl [Wen10, Section 3] that normal Cauchy–Riemann operator can be de�ned even

for non-embedded J–holomorphic maps, and that it plays an important role in understanding

the deformation theory of J–holomorphic curves. In this section we will brie�y explain the

construction of Tu and Nu, and discuss the proof of Proposition 7.9.

Letu : (Σ, j) → (M, J ) be a non-constant J–holomorphic map. Denote by du, J the real Cauchy–

Riemann operator on u∗TM . Denote by
¯∂u, J the complex linear part of du, J . This is a complex

Cauchy–Riemann operator and gives u∗TM the structure of a holomorphic vector bundle

E B (u∗TM, ¯∂u, J ).

Denote by TΣ the tangent bundle of Σ equipped with its natural holomorphic structure. The

derivatives of u induce a holomorphic map du : TΣ→E. The quotient of this map, thought of as

a morphism of sheaves,

Q BE/TΣ

is a coherent sheaf on Σ. It is locally free outside the critical points of du. Denote by D the divisor of

the critical points of du, counted with multiplicity. Near a critical point z0 of order k we can write
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du as (z − z0)
k f (z) with f (z0) , 0. Consequently, the torsion subsheaf of Q is OD , the structure

sheaf of D. The quotient sheaf

Nu B Q/OD

is torsion free, and so locally free because dimC Σ = 1; that is, Nu is a holomorphic vector bundle.

Similarly, the sheaf

Tu B ker(E →Nu)

is locally free. We call Nu the generalized normal bundle of u and Tu the generalized tangent
bundle of u.

Proposition A.1. We have

Tu/TΣ � OD and Tu � TΣ(D).

Proof. The following commutative diagram summarizes the construction of Tu and Nu:

OD

TΣ E Q

Tu E Nu

Tu/TΣ.

=

Since the columns and rows are exact sequences, it follows from the Snake Lemma that

OD � Tu/TΣ.

This implies the assertion. �

Proof of Proposition 7.9. Let S be an Aut(Σ, j)–invariant local slice around j of the Teichmüller

space T(Σ). Recall that du, j ¯∂J : Γ(u∗TM)⊕TjS→ Ω0,1(Σ,u∗TM) is the linearization of
¯∂J , de�ned

in (7.2), restricted toC∞(Σ,M)×S. Denote byTu the complex vector bundle underlying Tu and by

Nu the complex vector bundle underlyingNu. As was mentioned before De�nition 7.8,Tu ⊂ u∗TM
is the unique complex subbundle of rank one containing du(TΣ). Using a Hermitian metric on

u∗TM we obtain an isomorphism

u∗TM � Tu ⊕ Nu .

With respect to this splitting dJ ,u , the restriction of du, j ¯∂J to Γ(u∗TM), can be written as

dJ ,u =

(
dTu, J ∗

† dNu, J

)
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with dNu, J denoting the normal Cauchy–Riemann operator introduced in De�nition 7.8. Since

¯∂u, J ◦ du = du ◦ ¯∂T Σ and Tu � TΣ(D),

it follows that

¯∂Tu, J =
¯∂Tu and † = 0.

Denote by ι : TjS → Ω0,1(Σ,u∗TM) the restriction of du, j ¯∂J to TjS. The tangent space to the

Teichmüller space T(Σ) at [j] can be identi�ed with coker
¯∂T Σ � ker

¯∂∗T Σ. With respect to this

identi�cation, ι is the restriction of du : TΣ → u∗TM to ker
¯∂∗T Σ. Consequently, we can write

du, j ¯∂J : Γ(Tu) ⊕ TjS ⊕ Γ(Nu) → Γ(Tu) ⊕ Γ(Nu) as

du, j ¯∂J =

(
¯∂Tu ι ∗

0 0 dNu, J

)
.

The short exact sequence

0→ TΣ→ Tu → OD → 0

induces the following long exact sequence in cohomology

0→ H 0(TΣ) → H 0(Tu) → H 0(OD ) → H 1(TΣ) → H 1(Tu) → 0.

It follows that

index
¯∂Tu = 2χ (Tu) = 2χ (TΣ) + 2h0(OD ) = index

¯∂T Σ + 2Z (du),

that ker
¯∂T Σ → ker

¯∂Tu is injective, and that coker
¯∂T Σ → coker

¯∂Tu is surjective. The latter

implies that
¯∂Tu ⊕ ι is surjective. Therefore, there are an exact sequence

0→ ker
¯∂Tu ⊕ ι → ker du, j ¯∂J → ker d

N
u, J → 0,

and an isomorphism

coker du, j ¯∂J � coker d
N
u, J .

The kernel of
¯∂Tu ⊕ ι contains aut(Σ, j) = ker

¯∂T Σ and

dim ker
¯∂Tu ⊕ ι = index

¯∂Tu ⊕ ι

= index
¯∂Tu + dimTjS

= index
¯∂T Σ + dimTjS + 2Z (du)

= dim aut(Σ, j) + 2Z (du).

This completes the proof of Proposition 7.9. �
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