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Abstract

The space of Fredholm operators of fixed index is stratified by submanifolds according to
the dimension of the kernel. We give sufficient conditions for a family of elliptic operators
to intersect these strata transversely. The importance of our conditions is that they easily
generalize to equivariant situations, such as those which arise from transversality questions
for multiple covers of J-holomorphic maps. Using this abstract framework, we give a concise
exposition of Wendl’s progress towards establishing the super-rigidity conjecture.

1 Introduction

Let X and Y be two finite dimensional vector spaces. The space Hom(X, Y) is stratified by the
submanifolds

%, ={L € Hom(X,Y) :rkL =r}

of codimension
codim %, = (dimX — r)(dimY —r).

This generalizes to infinite dimensions as follows. Let X and Y be two Banach spaces. The space
of Fredholm operators from X to Y, denoted by (X, Y), is stratified by the submanifolds

(1.1) Fie={Le F(X,Y):dimkerL = d and dimcokerL = e}
of codimension
(1.2) codim F; . = de.

In many geometric problems, especially in the study of moduli spaces in algebraic geometry, gauge
theory, and symplectic topology, one is led to consider families of elliptic operators D: & —
F (X, Y) parametrized by a Banach manifold & and to analyze the subsets D™'(F..).



The archetypal example is Brill-Noether theory in algebraic geometry. Let X be a closed, con-
nected Riemann surface. Denote by Pic(Z) the Picard group of isomorphism classes of holomorphic
line bundles & — X. Brill-Noether is concerned with the study of the subsets G, C Pic(%), called
the Brill-Noether loci, defined by

G = {[3] € Pic(2) : deg(Z) =d and dimH(Z, &) = r + 1}.

The fundamental results of this theory deal with the questions of whether G/, is non-empty, smooth,
and of the expected codimension.

This connects to the previous discussion as follows. Fix a Hermitian line bundle L of degree
d. Denote the space of unitary connections on L by &/(L). The complex gauge group €¢(L)
acts on /(L) and the quotient £/(L)/€ (L) is biholomorphic to Pic?(Z), the component of Pic(Z)
parametrizing holomorphic line bundles of degree d. Define the family of elliptic operators

d: A(L) - F([T(L), Q% (2, L))
by assigning to every connection A the Dolbeault operator 94 = V?&l. Set
Gl = 0 (Frir,g-asr(X, Y)).

It follows from the Riemann-Roch Theorem and Hodge theory that the Brill-Noether loci can be
described as the quotients
G, =G/g ().

If G}, is non-empty, then
codim G}, = codim é; S@TF+1)(g-d+r).

This is an immediate consequence of the definition (N}"i and (1.2). Ideally, every G/, is smooth of
codimension (r + 1)(g — d + r). This is not always true, but Gieseker [Gie82] proved that it holds
for generic X; see also [EH83; Laz86]. For an extensive discussion of Brill-Noether theory we refer
the reader to [ACGHS5].

By analogy, for a general family of elliptic operators D: & — F (X, Y) we ask the following
questions:

1. When are the subsets D™'(%, ) non-empty?
2. When are they smooth submanifolds of 9?
3. What are their codimensions?

Not much is known about (1), although index theory and the theory of spectral flow can yield partial
results. A simple answer to questions (2) and (3) is that D™'(Z%,,.) is smooth and of codimension
de if the map D is transverse to %, .. However, for many naturally occurring families of elliptic
operators this condition does not hold. For example, if D is a family of elliptic operators over a



manifold M and V is a local system, then the family DY of the elliptic operators D twisted by V
often is not transverse to %, . even if D is. Related issues arise for families of elliptic operators
pulled back by a covering map : M — M. The purpose of this article is to give useful answers
to questions (2) and (3) which apply to these equivariant situations. This theory is developed in
Part L.

The issues discussed above are well-known to arise from multiple covers in the theory of
J-holomorphic maps in symplectic topology. In fact, our motivation for writing this article came
from trying to understand Wendl’s progress towards establishing Bryan and Pandharipande’s
super-rigidity conjecture [Wen16]. In Part II we give a concise exposition of Wendl’s work using
the abstract framework developed here. A key difference between Wendl’s approach and ours is
the use of the language of local systems. We believe that this makes the proof easier to follow.

In future work we plan to study transversality for multiple covers of calibrated submanifolds
in manifolds with special holonomy such as associative submanifolds in G,—manifolds and special
Lagrangians in Calabi—Yau 3—folds.
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Part I

Equivariant Brill-Theory Theory

Throughout this part, let (M, g) be a connected, oriented Riemannian manifold and let E and F be
real vector bundles over M equipped with Euclidean metrics and metric connections. We fixed a
point xo € M. We assume that the injectivity radius of g is bounded below and that the Riemann
curvature tensor Ry, the curvature tensors of the connections on E and F, as well as all of their
derivatives are bounded. For k € Ny, we denote by W52I'(E) and W*2T'(F) the Sobolev completion
of the space of compactly supported sections of E and F with respect to the W*2-norm induced
by the Euclidean metric and the connection on E and F, respectively. We set L’T(E) := W%2I'(E)
and L?T'(F) := W%2T(F). Given two Banach spaces X and Y, we denote by (X, Y) the Banach
space of bounded linear operators from X to Y equipped with the operator norm.

2 Flexibility and Petri’s condition

Definition 2.1. Let k € Nj. A family of linear elliptic differential operators of order k consists
of a Banach manifold & and a smooth map

D: & — L (WFT(E), L’T(F))
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such that for every p € 9 the operator D,, := D(p) is the extension of a linear elliptic differential
operator of order k with smooth coefficients which are bounded and all of whose derivatives are
bounded.

Definition 2.2. Let (D,),co be a family of linear elliptic differential operators. Given d, e € N,
set
Pie = {p € & :dimker D, = d and dim coker D, = e}.

We are interested in finding conditions under which %, . is a submanifold of %. Since
Pa,e =D (Fae)

with %, . denoting the submanifold of Z(W*2T'(E), T(F)) defined in (1.1), this is the case if the
map D is transverse to F; .. Let us describe what this means more concretely. If p € % ., then
D, is a Fredholm operator and the normal space to %y . at D, is

Np, %4, = Hom(ker D), coker Dy);
see, e.g., [Kos7o, Section 1(b)] and Proposition 2.16.

Definition 2.3. Let (D,),co be a family of linear elliptic differential operators. Let p € 9. Denote
by d,D the derivative of the map D at p. Define L,,: T, — Hom(ker D, coker D,) by

Ly(p)s :=dpD(p)s mod im D,
for p € T, and s € ker D,,.

L, is the projection of d, D on the normal space Np, %4, .. Therefore, D being transverse to
Fa4,. means that L, is surjective for every p € %4 .. In this case, the Regular Value Theorem
guarantees that &, . is a submanifold of % of codimension

dim Hom(ker D,, coker D,) = de.

The task at hand is thus to find conditions which imply the surjectivity of L,. For example, L,
is surjective if the evaluation map

(2.4) ev,: I'(Hom(E, F)) — Hom(ker D,, coker D,)
satisfies the following two conditions:
1. The image of L, contains the image of ev,.
2. The evaluation map ev,, is surjective; equivalently, its adjoint ev}, is injective.

The following definitions introduce slight variations of these conditions.



Definition 2.5. A family of linear elliptic differential operators (D,),c is called flexible if for
every p € & the following holds: for every A € I'(Hom(E, F)) with compact support there is a
p € T, % such that

(2.6) dpD(p)s = As  mod im D,
for every s € ker D,.
The notion of flexibility is gauge invariant in the following sense.

Proposition 2.7. Let (Dy)yeo and (Dp)pegn be families of linear elliptic differential operators. Let
¢: P — Aut(E) and y: P — Aut(F) be smooth families of gauge transformations of E and F
parametrized by & which are bounded and all of whose derivatives are bounded. If (D,),c and
(Dp)pegb are related by

D(p) = §(p) o D(p) © Y(p),
then (Dp)pe is flexible if and only if(]jp)peg» is flexible.

Proof. Since
dpD(p) = $(p) © dpD() © Y(p) + dp(H) © D(p) + D(p) o Y(p)™" o dpY (),
for every p € T, and every § € ker D(p) we have
dpD(p)5 = $(p) 0 d,D() o Y(p)§ mod im D,.

Suppose that (Dp)pez is flexible. Given A e T'(Hom(E, F)) with compact support, let p € T, be
such that (2.6) with A = ¢(p)™' o Ao /(p)~" holds for all s € ker D,,. Since ker Dy, = §/(p) ker D,
and im D, = @(p) im Dy, it follows that

d,D(p)s = A5 mod imD,
for every § € ker Dp. Therefore, (ﬁp)pE o 1s flexible as well. m]

Remark 2.8. 1t is tempting to simplify Definition 2.5 and demand that for every A € I'(Hom(E, F))
with compact support there is a p € T, % such that

d,D(p) = A.

If this holds, then we say that (D,),c is strongly flexible. The disadvantage of strong flexibility
is that it fails to be gauge invariant; that is: the analogue of Proposition 2.7 does not hold.

Flexibility (in fact, even strong flexibility) is not a rare condition and is usually easy to verify.

Definition 2.9. Let D: T'(E) — I'(F) be a linear elliptic differential operator. Denote its formal
adjoint by D*: T'(F) — I'(E). We say that D satisfies Petri’s condition if the map

kerD ® ker D* — I'(E ® F)

is injective.



Remark 2.10. In algebraic geometry, a Riemann surface ¥ is said to satisfy Petri’s condition if for
every holomorphic line bundle & — X the Petri map

(2.11) H'®, 2)® H'(Z,Ks ® £*) — H(Z,K5)
is injective [ACGHS85, Lemma 1.6, Chapter IV].
Petri’s condition has the following important consequence.

Proposition 2.12. Let D: T'(E) — T'(F) be a linear elliptic differential operator. Suppose that the
extension of D to an operator W2?T'(E) — L*T(F) is Fredholm. Denote by

m: Hom(ker D, coker D) — L*T(Hom(E, F))
the adjoint of the evaluation map (2.4). If D satisfies Petri’s condition, then m is injective.
Proof. Denote by D*: T'(F) — I'(E) the formal adjoint of D. Since D is Fredholm we can identify
coker(D: WL (E) — L’T'(F)) = ker(D*: L*T(F) —» W 52T (E)).

Set n := dimker D. Let sy, . . ., s, be a L? orthonormal basis of ker D. A computation shows that
the map m is given by

n
(213) m(B) = ) (-,s:) Bs:.

i=1
If B is non-zero, then it follows from directly from Definition 2.9 that m(B) cannot vanish identically.

O

Petri’s condition appears to be a subtle property and difficult to verify. However, there is a
simple class of operators for which it holds almost trivially.

Proposition 2.14. Every first order differential operator D over a manifold M of dimension one satisfies
Petri’s condition.

Proof. By the uniqueness of solutions to ODEs, every element of ker D is determined by its value
at any point x € M. The same holds for D*. This directly implies the assertion. O

Theorem 2.15. Letd, e € Ny. If (Dp)peo is a flexible family of linear elliptic differential operators
satisfying Petri’s condition, then P4, C P is a smooth submanifold of codimension

codim Py . = de.

The proof relies on the following observation.



Proposition 2.16. For everyp € &, . there exits an open neighborhood % in &% and a smooth map
Z: U — Hom(ker Dy, coker D) such that

PaeNU=2"10) and d,Z =L,.

Proof. Let py € Pg4,.. Pick a complement coim D, of ker D,,, C WH*2T(E). Pick a lift of coker Dp,
to L2T'(F). With respect to the splittings

WFE2D(E) = coim D,, @kerD,, and L°I(F)=imD,, & coker D,
write D), as
11 pl2
Dy = (ggl ggz) :
p p

Let % be an open neighborhood of py € & such that D;,l is invertible for every p € %. Define
Z: U — Hom(ker Dy, coker D, ) by

Z(p) = Di* = D;'(D,')"'D,.

By direct inspection we see that d,,Z = Ly,. To see that 4 . N % = Z~'(0) we compute that

with 11y-1 11y-1112
_ (Dp )~ 0 _(id —(Dp )~ D,
®p = (—D;I(D;,l)—l i) @ H=1 id
we have
id o
®,D,¥, = ( . Z(p)). o

Proof of Theorem z.15. In light of the above, the theorem will follow from the Regular Value The-
orem applied to Z provided L, is surjective for every p € &%y .. Since p € Py ., D, is Fredholm.
Suppose B € Hom(ker Dy, coker D)) = Hom(ker D, ker D})) is perpendicular to im L,; that is

(B,Lp(p)y =0
for every p € T, %. Since (D,),c is flexible, for every A € I'(Hom(E, F)) with compact support
(m(B), A)r2 = 0.

Therefore, m(B) vanishes. It follows from Proposition 2.12 that B vanishes. Therefore, L, is
surjective. O

Remark 2.17. It should be pointed out that neither flexbility nor Petri’s condition are necessary for
the conclusion of Theorem 2.15 to hold. However, these conditions have the advantage that they
can be easily adapted to the equivariant setting.



3 Pulling back and twisting
This section introduces two constructions which produce new linear elliptic operators from old
ones: pulling back by a covering map and twisting by a Euclidean local system.

Definition 3.1. Let 7: M — Mbe a covering map with M connected. Let D: T(E) — I'(F) be a
linear differential operator. The pullback of D by x is the linear differential operator

a*D: T(n*E) — I'(x*F)
characterized by
(m*D)(r*s) = n*(Ds).

Definition 3.2. A Euclidean local system V is a Euclidean vector bundle V together with a flat
metric connection. To each Euclidean local system we assign its monodromy representation
p: m(M,xy) — O(V) with V denoting the fiber of V over x,.

Remark 3.3. The map V +— pu induces a bijection between gauge equivalence classes of Euclidean
local systems of rank r and equivalence classes of representations (M, xy) — O(r) up to con-
jugation by O(r). For a more detailed discussion of local systems we refer the reader to [Dimo4,
Section 2.5; Voio7, Section 9.2.1].

Definition 3.4. Let D: T'(E) — TI'(F) be a linear differential operator. Let V be a Euclidean local
system on M. The twist of D by V is the linear differential operator

DY: T(E®V) > T(F®V)
characterized as follows: if U is a open subset M, s € I'(U, E), and f € I'(U, V) is constant, then
DY(s® f) = (Ds) ® f.

The following shows that the pullback 7*D is equivalent to the twist DY for a suitable choice
of V.

Proposition 3.5. Let D: T'(E) — I'(F) be a linear differential operator. Let w: M — M be a covering
map with M connected. Fix Xy € M with 7(Xy) = xo. Denote by

C = m.m(M, %) < 11 (M, x0)
the characteristic subgroup of & and by
N = ﬂ gCg™*
gem(M,xp)
its normal core. Denote by R the trivial rank one local system on M. Set

V=R

The following hold:



1. The monodromy representation of V factors through G = m1(M, x)/N.
2. There are isomorphisms m,.: T(7*E) 2 T(EQ V) and m.: T(n*F) = T(F ® V) such that

DY =, on*Do L.

Remark 3.6. If 7 is a normal covering, then C = N and G = m;(M, x¢)/ N is its deck transformation
group. If & has k sheets, then C has index k. Its normal core has index at most k! by an elementary
result known as Poincaré’s Theorem. It follows from the observation that the kernel of the
canonical homomorphism 7;(M, xo) — Bij(G/C) is precisely N and Bij(G/C) = Sg.

Proof of Proposition 3.5. The monodromy representation 3 (M, x9) — O(V) of V is trivial on C;
hence, it must factor through G = m;(M, x;)/N.

For every vector bundle G over M there is an isomorphism I'(G) = I'(x.G). For every vector
bundle G over M there is an isomorphism

G2 rm(r"GeOR) =GR mR=GQV.

Denote the resulting isomorphism I'(x*G) = I'(G ® V) by .. For s € I(G) and f € C®(M) we
have

m((7*s)f) =s® m.f.

Let U be an open subset of M, s € I'(U, E), and f € I'(U, V). Suppose that f is constant. This is
equivalent to the corresponding function f := (m.)™' f on U := 77'(U) being locally constant. By
the characterizing properties of DY and 7*D and since 7*D is a differential operator, we have

DY(s® f) = (Ds) ® f

and
(7*D)(m) (s ® f) = (x*D)(x"s - f)
= (7*(Ds) - f)
= (m) ' ((Ds) ® f).
This proves that DY = 7, o 7*D o ;. mi

4 Equivariant flexibility and the equivariant Petri condition

Twisting and pulling back lead to families of linear elliptic differential operators which fail to be
flexible in the sense of Definition 2.5 (except for a few corner cases). In what follows we discuss
variants of Theorem 2.15 which apply to such families of linear elliptic differential operators.



Throughout this section and the next, let G be the quotient of 1 (M, x,) by a finite index normal
subgroup N. Denote by 7: M — M the covering map with characteristic subgroup N. Denote by

Viyoo oy Vi
the irreducible representations of G. Denote by V; the local system associated with V; and set
Kl' = EndG(V,) and k,' = dimR K,'.

Remark 4.1. The local system V, carries a canonical K;-action. By Schur’s Lemma, K; is a real
. ) e . . V.
division algebra; hence, by Frobenius’ Theorem, it is either R, C, or H and k; € {1, 2,4}. Since D;‘

. . v, V.
commutes with the action of K;, ker D, and coker D," are modules over K;.

Definition 4.2. A family of linear elliptic differential operators (D,),c is called G-equivariantly
flexible if for every p € 2 the following holds: for every A € I'(Hom(E, F)) with compact support
there is a p € T, % such that

dp*D(p)s = (7"A)s mod imz*D,
for every s € ker 7*D,,.

Proposition 2.7 holds with flexible replaced by G-equivariantly flexible. If (D)), is strongly
flexibly, then it is G-equivariantly flexible.

Definition 4.3. Let D: T'(E) — I'(F) be a linear elliptic differential operator. We say that D satisfies
the G-equivariant Petri condition if 7*D satisfies Petri’s condition.

Theorem 4.4. Let(D,),c be a G-equivariantly flexible family of linear elliptic differential operators
satisfying the G—equivariant Petri condition. For every d,e € N{" the subset

{@é\”e = {p € P : dimg, keng" = d; and dimg, Cokeng" = ei} cP

is a smooth submanifold of codimension
m
codim @Y = Z kid;e;
4,2 [Asd A A4
i=1

The proof is given in Section 5. The following is an immediate consequence of Theorem 4.4.

Proposition 4.5. Assume the situation of Theorem 4.4. Let V be a Euclidean local system whose
monodromy representation factors through G. Let {1, . .., {n, € Ny be such that

v=Pren.

i=1

10



Givend, e € Ny, set

m m
my, = {(g,g) EN XN : Y Cikidi =d and ) ikie; = e} and
i=1 i=1
9”;%6 = {p S dimkeng =d and dimcokeng = e}.
The following hold:
1 Ifmdze is empty, then so is g’dze‘
2. Q%e C P is a disjoint finite union of submanifolds of codimension at least

m
minv Zkidl-ei.
d.e)emy, i=1

Proof assuming Theorem 4.4. Since

we have
v o _ N
gd,e - U géd&'
(d.e)en,

The assertion thus follows from Theorem 4.4.
5 Proof of Theorem 4.4
The representation associated to the local system

V=mnR

is the left regular representation: R[G] = Map(G, R) with (g- f)(x) = f(g'x). Recall, the following

classical result from representation theory.

Theorem 5.1. Let G be a finite group. Let V1, . .., V,,, be the irreducible representations of G. Denote by
K; = Endg(V;) the commuting algebra of V;. The left regular representation of G can be decomposed

into irreducible representations as follows

m
RG] = (D Vi e, V/
j=1

with G acting on V; through the irreducible representation and trivially on V. In particular, the
multiplicity of V; in R[G] is the dimension of V; over K;. The right regular representation decomposes
analogously with G acting on V" trough the dual of the irreducible representation and trivially on V;.

11



Proof. Although this result is classical, we provide a sketch of its proof. R[G] is the group algebra
of G. A representation of G is nothing but an R[G]-module. Maschke’s Theorem says that for any
finite group R[G] is a semisimple R—-algebra. Any finite-dimensional semisimple R-algebra is a
product of simple algebras. Wedderburn’s Structure Theorem [Lano2, Chapter XVII Corollary
3.5] says that any simple R—-algebra A whose unique irreducible representation is denoted by V is
isomorphic to Endg(V) = V ®k V* with K = End4(V). |

This has the following important consequence.
Proposition 5.2. In the above situation the following hold:

1. The local system V decomposes as
m
(5-3) K = @Kl ®Ki Vl*
i=1
2. The space of sections of V is a G—representation and decomposes as
m
(5.4) rWv) = (Hre,) ex, vy
i=1

with G acting on V" through the contragredient' of the irreducible representation.

Proof. Given an open set U C M, set
U:=rYU)c M.

The restriction of 7 makes U a principal G-bundle over U.
By construction for every such open set U ¢ M we have

I(U,V) = C(U,R).
Denote by U x G the quotient of U X G by the left action
g (x.h) = (xg™", gh).

It is obvious that U — U Xg G, x + [x, 1] is an isomorphism of principal G-bundles. Denote
by C®(U,R[G])® the set of smooth G-equivariant maps from U to R[G]. The G-equivariant
exponential law asserts that

C*(U xg G,R) = C=(U,R[G])°.

!Given a representation p: G — GL(V), its contragredient is the representation G — GL(V*) given by g - v* =
v* o p(g™h).

12



Putting everything together we obtain
(U, V) = C*(U,R[G])°.
It follows from this identity that V is the vector bundle M x R[G]. Theorem 5.1 thus implies that

V = M x¢ R[G]

m
= M xg (@V ®, V)

i=1
m
= @K[ ®K; Vz*
i=1

This is the decomposition of V asserted in (1). It immediately implies the decomposition (5.4) of
I'(V) as a vector space.

The deck transformation group G acts on M on the right and thus on C*(M,R) = I'(V) on
the left. Therefore, I'(V) is a G-representation. The right action of G on M translates to the
obvious right action of G on M X G. Through the exponential law the induced left action on I'(V)
corresponds to the inverse of the right action on C*(M,R[G])C induced by the right action on
R[G]. It follows from Theorem 5.1 that with respect to the decomposition (5.4) the latter action
corresponds to the action of G on V" via the contragredient of the irreducible representation. O

The following observation makes the proof of Theorem 4.4 ameanable to the method used to
prove Theorem 2.15. Given d, e € N, set

9"’1’,6 = {p € P : dimg ker 7°D), = d and dimg coker 7°D,, = e}.

Definition 5.5. Set ¢; := dimg, V;. Given d € N[*, set

od = Zml Cikid;.
j=1

Proposition 5.6. Letd,e € N". Setd := od and e := oe. Then g’éve is an open and closed subset of
P . o
d,e

Proof. Proposition 3.5 and Proposition 5.2 provide G-equivariant isomorphisms

m m

(5.7) [(7*E) = @ T(E®V,) ®k, V; and T(r'F) = EB T(F®V,) ®, V.
i=1 i=1

With respect to these we have

(58) 7*Dy = P D, ®idy;.

i=1

13



Therefore, g’é\]e is a subset of g’ge. In fact, we have

T _ N
P, = U Py o
od'=d

oe'=e

Let py € @ge' Choose a neighborhood % of py such that for every p € % andi € {1,...,m}

: Zi : Ki
dim ker D, < dim ker Dy, .

A point p € % lies in &7, if and only if equality holds in all these inequalities and, therefore,
pE 92\] .- This proves that g’é\[ . Isopenin 7 . Applying the same reasoning to all other d’ and

e’ with ;Q’ =dandoe’ =¢ p}oves that g’ge is also closed. O
Definition 5.9. Given p € 9, define L;f : T,% — Homg(ker 7Dy, coker 7*D,) by
Ly (p)s = dpn"D(p)s mod im "D,

for p € T,P and s € ker 7*D,,. The linear map Ly takes values in Homg(ker 7* Dy, coker 7*D,,)
because 7*D,, is G-equivariant.

Proposition 5.10. For everyp € @é\]e there exits an open neighborhood % in & and a smooth map
Z: U — Homg(ker 7*D,, coker nj‘bp) such that

PaeNU=2"0) and dpyZ =Lj.

Proof. The proof is almost identical to that of Proposition 2.16. Since (7*Dj)peo is a family of
G-equivariant operators and the splittings

['(7"E) = coimz*D, ®ker7°D, and T(x"F)=imx"D, ® coker "D,
can be chosen G-invariant, the map Z takes values in Homg(ker 7*D,, coker 7*D,). |
Proposition 5.11. Letd,e € Ni*. Ifp € g)i]g’ then
T v 1%
(5.12) Homg(ker 7*D,, coker 7°D,,) = @ Homyg, (ker D,,", coker D,,").
i=1
In particular,

dim Homg(ker 7D, coker 7°D,) = Z kid;e;.
i=1

14



Proof. The group G acts on I'(x*E) and I'(x*F) by deck transformations, and on V;* through the
contragredient of the irreducible representation. The G-equivariant isomorphisms (5.7) induce
G-equivariant isomorphisms

m m
i V. . . v, .
ker 7" D), = @ kerD," ®x, V; and cokern'D, = @ coker D, ®k, V;.
i=1 i=1

It follows that

Homg(ker 7" Dy, 7 coker Dj,)

IR

m
V. " vV, #
@Homg(kerD;‘ ®k, V; ,cokeer’ ®x; V;)
ij=1

~
1l

V.\* * 1y v,
(kerD;’) ®k, Homg(V; Vi ) ®K; cokeer’

~
Il
—_

,és

Homg, (ker DY , coker Dg" ).

'6”293

i=1

Here we used Schur’s lemma; that is: Homg(V}", VJ*) vanishes if i # jandisequaltoK; ifi =j. O

At this stage, all that remains to establish Theorem 4.4 is prove that for every p € @é\f . the
linear map L7 : T, — Homg(ker 7*Dj, coker 7*D,) is surjective. Suppose that an element B of

Homg(ker 7Dy, coker 7°D;) = Homg(ker 7" Dy, ker 7° D))

is perpendicular to im L7; that is:
(B,LI(H)) =0
for every p € T, %. Since (Dp),co is G-equivariantly flexible, for every A € I'(Hom(E, F)) with
compact support.
(m(B), t*A);2 = 0.

The map m is G-equivariant. Therefore, m(B) is an element of
I'(Hom(x*E, 7*F))° = n*T(Hom(E, F));

that is, m(B) is the pullback of a section of Hom(E, F). Consequently, m(B) vanishes. D,, satisfies
the G-equivariant Petri condition; that is, 7*D,, satisfies Petri’s condition. Therefore, it follows
from Proposition 2.12 that B vanishes. This shows that L7 is surjective. O

Remark 5.13. By construction, 7*D maps & into the space of G-equivariant bounded linear
maps Z(X,Y)C. If p € P7 .» then the fiber of normal bundle of gdGe c L(X,Y)° at "Dy is

Hom(ker 7D, coker ﬂ*Dp)G. The above shows that the image of 7* D intersects 97dGe transversely
under the hypotheses of Theorem 4.4
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6 Self-adjoint operators

The theory developed here is not needed for

Definition 6.1. Let k € Ny. A family of self-adjoint linear elliptic differential operators of order
k consists of a Banach manifold & and a smooth map

D: P — L(WFT(E), L’T(E))

such that for every p € & the operator D,, := D(p) is the extension of a self-adjoint linear elliptic
differential operator of order k with smooth coefficients which are bounded and all of whose
derivatives are bounded.

The theory developed in the earlier sections cannot be applied to D as above, because families
of self-adjoint operators necessarily fail to be flexible in the sense of Definition 2.5 (except for a
few corner cases). Moreover, requiring Petri’s condition for self-adjoint operators is too strong.
In this section, we adapt the notions of flexibility and Petri’s condition to the case of self-adjoint
operators so that an analogue of Theorem 2.15 holds.

Given a Euclidean vector space W, we denote by Sym(W) the space of self-adjoint endomor-
phisms of W and by S?W the second symmetric power of W. Analogously, given a Euclidean
vector bundle E, we denote by Sym(E) the bundle of self-adjoint endomorphisms of E and by S2E
the second symmetric power of E.

Definition 6.2. A family of self-adjoint linear elliptic differential operators (D,),c is called self-
adjoint flexible if for every p € & the following holds: for every A € I'(Sym(E)) with compact
support there is a p € T, % such that

d,D(p)s = As mod im D,
for every s € ker D,,.

Definition 6.3. Let D: T(E) — T'(E) be a self-adjoint linear elliptic differential operator with
finite-dimensional L? kernel. We say that D satisfies the self-adjoint Petri condition if the map

S%ker D — I'(S?E)
is injective.

Theorem 6.4. Let (D,)y,co be a self-adjoint flexible family of self-adjoint linear elliptic differential
operators satisfying the self-adjoint Petri condition Given d € Ny, set

Pq = {p € & :dimkerD, = d}.
Then Py C P is a smooth submanifold of codimension

d+1)

codim P, = ( 5
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Proof. The proof is almost identical to that of Theorem 2.15. Let p € %;. Denote by II,, the
orthogonal projection onto ker D,,. Define L, : T,% — Sym(ker D,) by

Ly(p)s := IL,d,D(p)s

for p € T,% and s € ker D,. There exits an open neighborhood % of p in % and a smooth map
Z: U — Sym(ker D,) such that

PaeNU=2"10) and dpZ =L,.
It follows as in the proof of Theorem 2.15 that L, is surjective at p. Therefore, &  is a
submanifold of codimension (d;rl) O

There also is an analogue of the theory discussed in Section 4. Throughout the remainder of
this section, we let G, N, 7: M — M, V;, V, K;, and k; be as in Section 4.

Definition 6.5. A family of self-adjoint linear elliptic differential operators (D, ), is called G-
equivariantly self-adjoint flexible if for every p € 9 the following holds: for every A € I'(Sym(E))
with compact support there is a p € T,% such that

d,7*D(p)s = (7*A)s mod imx"D,
for every s € ker 7*D,.

Definition 6.6. Let D: T'(E) — T'(F) be a self-adjoint linear elliptic differential operator. We say
that D satisfies the G-equivariant self-adjoint Petri condition if 7*D satisfies the self-adjoint
Petri condition.

Theorem 6.7. Let (Dy)yc» be a G—equivariantly self-adjoint flexible family of self-adjoint linear
elliptic differential operators satisfying the G—equivariant self-adjoint Petri condition. Given d € N,
set

«@g = {p € P : dimg, kengi = di}.

Then g’ge C P is a smooth submanifold of codimension

m di
codim P}, = 3" d; +k,»(2).
=

Sketch of proof. The proof is almost identical to that of Theorem 4.4. The key differences are that
L7, defined in Definition 5.9, now takes values in Sym(ker 7T*Dp)G and the isomorphism from
Proposition 5.11 is replaced by

(Sym(ker ﬂ*Dp))G = EB Symy_ (ker Dg").

i=1
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Having made these two adaptations the remainder of the proof follows the argument in Section 5
closely. The codimension formulae follow from

d
dim Symg (K9) = d + k(z).

with k := dimg K. O
Theorem 6.7 has the following consequence.

Proposition 6.8. Assume the situation of Theorem 6.7 Let V. be a Euclidean local system whose
monodromy representation factors through G = (M, x0)/N. Let {1, . ..,{m € N be such that

m
mR= Py
i=1

: ik d; d} and
i=1

@dz = {p EP: dimkeng = d}.

Given d € Ny, set

m,

&<
I
—_—
(S
m
Z
°3
Ingb
D
&
S
I

The following hold:
V. Y
1. Ifm is empty, then so is P .
2. gidz C @ is a disjoint finite union of submanifolds of codimension at least

min Zm: d; + k; (c;l)

v
gemd’e i=1

Part II
Application to super-rigidity

7 Bryan and Pandharipande’s super-rigidity conjecture

We begin by recalling the notion of super-rigidity as defined by Eftekhary [Eft16, Section 1] and
Wendl [Wen16, Section 2.1]. Throughout, let (M, J, g) be an almost Hermitian 2n-manifold.
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Definition 7.1. A J-holomorphicmapu: (Z,j) — (M, J)is a pair consisting of a closed, connected
Riemann surface (Z, j) and a smooth map u: £ — M satisfying the non-linear Cauchy—-Riemann
equation

(7.2) 3y, j) = %(du () oduoj)=0.

Definition 7.3. Let u: (3,j) — (M, J) be a J-holomorphic map. Let ¢ € Diff(3) be a diffeomor-
phism. The reparametrization of u by ¢ is the J-holomorphic map u o ¢~1: (%, ¢.j) — (M, J).

Definition 7.4. Let u: (3,j) — (M, J) be a J-holomorphic map and let 7: (£,j) — (,j) be a
holomorphic map of degree deg(xr) > 2. The composition u o 7: (2,) — (M, ]) is said to be a
multiple cover of u. A J-holomorphic map is simple if it is not constant and not a multiple cover.

Super-rigidity is a condition on the infinitesimal deformation theory of J-holomorphic maps
up to reparametrization. We will have to briefly review this theory. Let u: (%,j) — (M, ]) be a
non-constant J-holomorphic map. Set

Aut(2,j) = {¢ € Diff () : ¢.j =j} and aut(Z,j) :={v € Vect(Z) : £,j = 0}.
Let & be an Aut(Z, j)-invariant slice of the Teichmiiller space () around j. Denote by
dyj0;: TW'TM) ® T;8 — Q*'(u*'TM)

the linearization of d; at (u, j) restricted to C*(2, M) x §. The action of Aut(Z, j) on C*(M) X §
preserves 8_]_1(0). Consequently, there is an inclusion

aut(%, j) < kerd, ;0;.
The space of J-holomorphic maps up to reparametrization has virtual dimension
indexd, ;07 — dim aut(%,j) = (n — 3) () + 2([Z], u"c;(M));
see, e.g., [MS12, Section 3; Wenio, Theorem o; [P18, Proposition 5.1].
Definition 7.5. The index of a J-holomorphic map u: (%,j) — (M, J) is
(7.6) index(u) == (n - 3)y(X) + 2([2], u"c1(M)).

The restriction of d,, ;d; to T'(u*TM) is given by

7 dugé =3 (VE+] 0 (VE o+ (Vel) o duo )

for & € T(u*TM). Here V denotes any torsion-free connection on TM and also the induced
connection on u*TM. If (u, j) is a J-holomorphic map, then the right-hand side of (7.7) does not
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depend on the choice of V; see [MS12, Proposition 3.1.1]. The operator d, ; has the property that if
& € I(T%), then d, j(du(£)) is a (0, 1)-form taking values in du(TX) C u*TM. If u is non-constant,
then there is a unique complex subbundle

Tu Cc u'TM

of rank one containing du(TX); see [ISg9, Section 1.3; Wen1o, Section 3.3] and Appendix A. Since
Tu agrees with du(TZ) outside finitely many points, d,, ; maps I['(Tu) to Q*!(Tw).

Definition 7.8. Letu: (Z,j) — (M, J) be a non-constant J-holomorphic map. Set
Nu :=u"TM/Tu.
The normal Cauchy-Riemann operator associated with u is the linear map
bfZJ: I(Nu) — Q"' (Nu)
induced by b, ;.

If # = uo s and u is an immersion, then N = 7*Nu and Nu = u*TM/TX is the normal bundle
of the immersion u.

Proposition 7.9 ([IS99, Lemma 1.5.1; Wenio, Theorem 3]; see also Appendix A). Letu: (Z,j) —
(M, ]) be a non-constant J—holomorphic map. Denote by Z(du) the number of critical points of u
counted with multiplicity. The following hold:

1. There is a surjection
kerd, ;j0; —» ker bfy]

whose kernel contains aut(X, j) and has dimension dim aut(2, j) + 2Z(du).

2. We have
cokerd,, j0; = coker bfZ].

3. We have

index DIIZ 7 = index(u) — 2Z(du) < index(u).

Geometrically, the additional 2Z(du) dimensions correspond to deforming the location of the
critical points of u without deforming its image u(X).

Definition 7.10. A non-constant J-holomorphic map u is rigid if ker bf;’ ;=0
A multiple cover @ of u may fail to be rigid, even if u itself is rigid.
Definition 7.11. A simple J-holomorphic map u: (Z,j) — (M, ]) is called super-rigid if it is rigid

and all of its multiple covers are rigid.
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If u is super-rigid, then it must have index(u) < 0. Suppose that M admits a symplectic form o.
Bryan and Pandharipande [BPo1, Section 1.2] conjectured that super-rigidity holds for every simple
J-holomorphic map u with index(u) < 0 provided J is a generic complex structure J compatible
with w.

Definition 7.12. An almost complex structure J is called super-rigid if the following hold:

1. Every simple J-holomorphic map of index zero is super-rigid.
2. Every simple J-holomorphic map has non-negative index.

3. Every simple J-holomorphic map of index zero is an embedding, and every two sim-
ple J-holomorphic maps of index zero either have disjoint images or are related by a
reparametrization.

Remark 7.13. In dimension four, one should weaken (3) and require only that every simple J-
holomorphic map of index zero is an immersion with transverse self-intersections, and that two
such maps are either transverse to one another or are related by reparametrization. However, we
will only be concerned with dimension at least six.

Definition 7.14. Let (M, w) be a symplectic manifold. Denote by #(w) the separable Banach
manifold? of almost complex structures on M compatible with w. Denote by Z(«w) the subset of
those almost complex structures J € #(w) which are super-rigid.

Definition 7.15. Let X be a topological space. A subset A C X is called residual if it is the
intersection of countably many dense open subsets.

Conjecture 7.16 (Bryan and Pandharipande). Let (M, w) be a symplectic manifold. If dim M > 6,
then f.,(w) C F(w) is a residual subset.

This conjecture remains open. However, Wendl [Wen16] has made substantial progress towards
proving it.

Definition 7.17. Let (M, w) be a symplectic manifold. We denote by #p(w) the interior of the set
of those almost complex structures J € #(w) satisfying the following: for every non-constant
J-holomorphic map u: (Z,j) — (M, ]J) of the normal Cauchy-Riemann operator bﬁ{ 7 satisfies
Petri’s condition. Set

jo,P(a)) = jo(a)) N jP(w)'

Theorem 7.18 (Wendl [Weni6]). Let (M, w) be a symplectic manifold of dimension at least six. If
dim M > 6, then %, p(w) C JFp(w) is a residual subset.

The remainder of this part of the article is concerned with the proof of Theorem 7.18 as
well as the proof of Theorem 15.2 which deals with the failure of super-rigidity along paths of
almost complex structures. Throughout the next seven sections, (M, w) is a symplectic manifold
of dimension 2n > 6.

2The cognisant reader will know that the space almost complex structures compatible with w is naturally a Fréchet
manifold. To obtain a separable Banach we work with Floer’s C° topology; see [Flo88, Section 5; MS12, Remark 3.2.7].
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8 The universal moduli space of simple J-holomorphic maps

Let us recall some well-known facts about the moduli space of simple J-holomorphic maps.
Definition 8.1. Let k € Z. Denote by . (w) the space of pairs (J; [u, j]) consisting of:
« an almost complex structure J € #p(w), and

- an equivalence class of simple J-holomorphic maps u: (%,j) — (M, J) of index k up to
reparametrization by Diff(Z).

Theorem 8.2 ([Wenio, Theorem o; IP18, Proposition 5.1]). Let k € Z. M (w) is a separable Banach
manifold. The projection map I1: My(w) — Fp(w) is a Fredholm map of index k.

Proposition 8.3. There is a residual subset Fo(w) C Jfp(w) such that for every ] € Fo(w) and
every simple J—holomorphic map u: (,j) — (M, J) we have index(u) > 0.

This is an immediate consequence of the following fact, which will be used throughout this
article.

Proposition 8.4. Let X and Y be separable Banach manifolds and let f: X — Y be a Fredholm map
of index i. If W C X is a submanifold of codimension at least i + 1, then Y\ f(W) is residual.

Proof. Although this is well-known, let us explain the proof. Let Ny W = T, X /T, W be the normal
space to W at x € W. There are short exact sequences

0 — ker(dx f)/ker(dx flw) = NxW — im(dy f)/im(dx flw) — 0

and
0 — im(dy f)/im(dy f|lw) — coker(dy f|w) — coker(dy f) — 0.

It follows that f|y is a Fredholm map of index
index(dy f|w) = index(d, f) — dim N, W,

which is at most —1. In particular, dim coker(d, f|w) > 0 for every x € W. Therefore, every
y € f(W) is critical for f|w. However, by the Sard-Smale Theorem [Sma65] the set of critical
values of f| is meager, that is, its complement is residual. O

Definition 8.5. Denote by ﬂoﬂ(w) the universal moduli space of simple, possibly disconnected
J-holomorphic maps of index zero. Set

Wy(w) = {(]; [u,j]) € /%gj(a)) : u is not an embedding}.

Theorem 8.6 (Oh and Zhu [OZog, Theorem 1.1] and Ionel and Parker [IP18, Proposition A.4]).
Wy (w) C ./%OH(@) has codimension at least 2(n — 2).
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9 Strong flexibility

The following result will imply that the flexibility assumptions of Theorem 2.15 and Theorem 4.4
are satisfied.

For two complex vector spaces V and W, denote by Home(V, W) the space of C—anti-linear
homomorphisms from V to W, and similarly for vector bundles. In particular, if E — X is a complex
vector bundle, then A*!'T*S ® E = Hom¢(TZ, E).

Proposition 9.1 ([Wen16, Lemma 6.1]). Let ] € #(w). Let u: (3,j) — (M,]) be a simple J-
holomorphic map. Consider the set of embedded points

U:={xeZ:u (ux)) = {x} and dyu # 0}.

For every
A € T(Hom(Nu, Homc(TZ, Nu))
with support in U there exists a 1-parameter family (J;);er C 7 (w) such that:

1. u is J—holomorphic with respect to all J;, and

d N _
2. 5|t=0 Y, = A

Proof. The tangent space to 7 (w) at ] is given by
T]] = {j (S F(End(TM)) j] +]j =0 and a)(j, ) + Ct)(,j) — 0}

This means that Ty _# consists of anti-linear endomorphisms which are skew-adjoint with respect
to w. For x € U, we can write TyM = T3 & N,.=. Given j € Ho_mc(TZ, Nu), denote by i1 its
adjoint with respect to w and set

s (o -

=)

By construction JJ + JJ = 0 and w(J-, ) + (-, J-) = 0.
Given A € I'(Hom(Nu, Homc(TZ, Nu)) with support in U, pick (J;);er C F(w) such that
Jiluz) = J for every t and such that for every & € T(Nu) we have

1 d
IV, —
2% ar

] =( 0 (A(é)j)*)
o kA 0 )

By construction u is J-holomorphic with respect to all J;. It follows from (7.7) that

d N
a - bth =A. O
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10 Rigidity of unbranched covers

As a warm-up, let us explain how to prove that for a generic J € #(w) all J-holomorphic maps
of the form u o & with u: (3,j) — (M, J) a simple J-holomorphic map with index(u) = 0 and
7: (2,j) — (Z,) an unbranched holomorphic covering map are rigid.

Definition 10.1. Let ¥ and 3 be closed, connected surfaces. Let 7: 3 — 3 be a covering map.
Denote by /%Oz(a)) the component of /#(w) consisting of those pairs (J; [u, j]) with the domain of
u being 3. Set

Wr(w) = {(]; [u,j]) € M (w) : 7*u is not rigid}.

Proposition 10.2. %, (w) C /%Oz(a))\‘W(z(a)) has codimension at least one.

Denote by IT: #(w) — #(w) the projection map. From Proposition 8.4 it follows that
(7 (w)) C fp(w) is meager, that is, its complement is residual. Since there are only countably
many closed, connected surfaces and only countably many covering maps between closed, con-
nected surfaces, the set of J € #p(w) such that any J-holomorphic map of the form u o & as above
is rigid is residual.

Proof of Proposition 10.2. Set
P = M\ V().

Define Hilbert space bundles 2" and % over & with
Liyug) = WHTWNw)  and - Yju,jp = L°Q™ (2. Nu).

Define
NP L, Y)

by
oV (J; [w.j]) =)

In Definition 2.1 we assumed E and F to be fixed. We can generalize this to E and F varying with
p € P. In fact, this generalization is easily reduced to the situation considered in Definition 2.1 by
locally trivializing the dependence of E and F on p € 9. The equivariant notion of flexibility is not
affected by changing the choice of local trivialization. Petri’s condition is manifestly independent
of the choice of trivialization. Having explained this, we will consider (,),c% as a family of linear
elliptic differential operators in this slightly generalized sense.

By Proposition 9.1, (dp)pes is strongly flexible and, therefore, G-equivariantly flexible for
every G.

We have

i == indexd" = deg(n)-index bi\{] < deg(r) - index(u) = 0.

uorm,J —
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Therefore, it follows from Proposition 3.5 and Proposition 6.8 that

® R
V(o) =74,
d=1

has codimension at least one. m]

There are two essential difficulties one needs to overcome to deal with holomorphic maps
7: (2,)) — (,j) which are not covering maps:

1. Proposition 3.5 and Proposition 6.8 do not apply directly to branched covers.

2. These maps come in positive dimensional families whereas there are only countably many
covering maps.

The upcoming three subsections will provide us with a framework to deal with both of these
issues.
11 Cauchy-Riemann operators on punctured Riemann surfaces

The following discussion will allow us to remove isolated points from branched covers. In particular,
it allows us to remove preimages of branch-points.
Set
D:i={zeC:|z| <1} and D :=D\{0}.

Define a diffeomorphism ¢/ : (0, 00) x S' — D by
Y(t, o) = e~ (i),
Definition 11.1. Let X be a closed, connected Riemann surface. Let Z C X be a finite set and set
S =3\Z.

For each x € Z, let ¢,: D — X be a chart such that ¢,(0) = x and ¢,(D) N Z = @. Choose a
Riemannian metric gy and a smooth function 7: % — [0, o) such that for every x € Z

l//*¢;kcgcyl = (dt)z + (dOf)z and To¢,oy(t,a)=t.

Definition 11.2. Let E be a Euclidean vector bundle over 3 together with a metric connection. For
any compactly supported section s € I'(E) define

2 2 2 2 2
s = s|“vol and ||s =||s + || Vs .
I, o= [1sfvolyy and sl o= sl + 191,
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Denote by T/\/'Clylz (E) the completion of the space of compactly supported sections of E with respect
to [|[[;, 2. Denote by Lzyl(E) the completion of the space of compactly supported sections of E
cyl
with respect to ||-||;z -
cyl

We employ the following convention: for a weight function w and a normed space of sections
X (such as Liyl(E) or Wclyl2 (E)) we denote by wX the space of sections of the form ws for s € X
equipped with the norm ||ws]|| == ||s||x.

Proposition 11.3. Let E be a Hermitian vector bundle over 3 together with a compatible connection. Let
dg: T'(E) — Q%Y(3, E) be a real Cauchy-Riemann operator. Set E = Els\z. Denote by d : I'(E) —
Q%1(3, E) the restriction of dg. The following hold:

1. For every 6 € R the operator dy; extends to a bounded linear operator
bg st e TWIIT(E) — e TL2Q) (5, E).

2. The operator by, 5 is Fredholm if and only if § ¢ Z.

3. If§ € (0,1), then

kerd; 5 = kerdp and cokerdg 5 = cokerdg.

Proof. For every x € Z identify ¢,(D) with D and choose a trivialization E|p = C®". In these
trivializations we can write dg as 0 + adz with a € C*(D,Endg(C")). Pulling back via i and
identifying Q%1((0, 00) x S, C"1) with C®((0, 00) x S, C"" 1), this becomes

(11.4) 0; +i0y +a
with @ and all of its derivatives decaying exponentially as ¢ goes to infinity. Since
TogyoY(t,a) =t,

we have
=67 61
e °"Dgs S |le” 9 sy, 12
H E ||L§y1 N ” ”WC‘yl2

The above also proves that dy is asymptotically translation invariant and thus the standard
theory for such operators applies; see, e.g., [LM85; Donoz, Section 3; HHN15, Section 2.1]. According
to this theory, by s is Fredholm if and only if -6 ¢ spec(id,) = Z.

It remains to prove (3). Fix § € (0,1). If s is a smooth section of E over X, then

-0t1
e S 2 < 00,
H ”py'clyl2

Therefore, ker dg C ker g s Conversely, if s € ker g s then it is smooth on 3, satisfies dgs = 0
on , and around every puncture x obeys an estimate of the form

Is1($x(2)) < 1217°.
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This implies that s is in L? and satisfies dgs = 0 weakly on all of 3. Therefore, s extends smoothly
over Z and this extension lies in ker dg. This proves that ker dp = ker dg 4.

The isomorphism of the cokernels follows by a similar argument. While the metric g, does
not extend to %, it is conformal to a metric g which does. Denote by dy, the formal adjoint of dg
with respect to g and by DE the formal adjoint of d; with respect to gey1. In fact, since the L? inner
product on 1-forms on a Riemann surface depends only on the conformal class of the metric, we
have

dp =D
on (0, 1)-forms compactly supported in 3. The above reasoning shows that, for every § € R, L
extends to a bounded linear operator DE,5 : eaTWC;IZQO’I(Z, E) - eSTLiylr(E). Since dg and dg 4
are Fredholm and by elliptic regularity, coker dg = ker dy, and coker dg, s = ker DE,— 5 If a € kerdy,
then |alg,, < e™"; hence,

le?Tall;. < oo.
cyl

It follows that o € ker DE’_ 5 Therefore, ker d;, C ker DE’_ 5 Conversely, if @ € ker bz’_ 5 then it is

smooth on 3, satisfies dpa =0on >, and

|al($x(2)) < |21°7.

The factor |z|™! arises from relating the norm of a 1-form in Euclidean coordinates to its norm
in cylindrical coordinates. This implies that « is in L* and satisfies dja = 0 weakly on all of
Y. Therefore, a extends smoothly over Z and this extension lies in kerdy. This proves that

ker D*E = ker bz’_a. O

Proposition 11.5. Assume the situation of Proposition 11.3. Let V be a Euclidean local system on 3.
For every x € Z denote by p,, € O(V) the monodromy of V. around x. The following hold:

v ;
1. For every § € R the operator ey extends to a bounded linear operator

V . . .
b s e5TV\/C1y’12F(E ®V)— e&LZQg’y}(Z,E V).

2. The operator DEX(S is Fredholm if and only if for all x € Z we have e 2"'% ¢ spec(ju).

3. Set
8o = min{5 € (0,1] : e¥"'% € spec(uy) for any x € Z}.

If6 €(0,0), then

index bg’(s =rkV -indexdg — rk E - Z dim(V /VHx),

xeZ

Here V¥~ denotes the pi,—invariant subspace of V.
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. . . 4
Proof. Arguing as in the proof of Proposition 11.3 we can write b, near x € Z as
N
0y +iVy~ +a

acting on E ® V. Here V _ denotes the local system over S' obtained by pulling back V via ¢, o
and then restricting to an S! factor in (0, 00) X S!. This immediately implies (1). Since

spec(ngx) = {/1 eR: et e spec(yx)},

assertion (2) follows as well.

Wendl [Wen16, Section 4] gives a proof of the index formula (3) using the Riemann—Roch
theorem for punctured surfaces developed by Schwarz [Schos, Section 3.3]. In order to keep
the present article self-contained we provide a proof using Kawasaki’s orbifold Riemann—-Roch
theorem [Kaw79].

For every x € Z the monodromy of V around x factors through a cyclic group Z,_. Denote by
3 the orbifold whose underlying topological space is 3 and with orbifold points precisely at the
points of Z and with isotropy group at x given by Z,, . The local system V over . extends to a
local system Y over 3. The reader will have no trouble to verify that Proposition 11.3(3) extends to
% replaced with 3 and E replaced with E ® V provided we impose that § € (0, &). This implies that

. v
index bE’ 5= index d, i

The latter agrees with the index of 8_E®f,.
The orbifold Riemann-Roch theorem asserts that

(11.6) index dy ¢ = / tdys(TZ)chys(E® V).
- Jas
Here A3 is the inertia orbifold. In the situation at hand it is given by
AS=3U{(x,9):x€Zandg # 1e€Zs}
with the points (x, g) being isolated and having isotropy group Z,, . Furthermore, the differential
form td, s (TZ)ch,s(E ® V) agrees with the product of the usual Chern-Weil representatives of
the Todd class and the Chern character on 3, and with

1
£ tg(TeD)chy (B @ V)

on (x, g). Here tdy and ch, denote the equivariant Todd class and the equivariant Chern character,
respectively. In light of the above discussion the orbifold Riemann-Roch theorem becomes

index dg = / td(TZ)ch(E ® V) + rk(E) Z gl Z tdy (T, Z)chy (V).
- >

xezZ X g#le€Zy,
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Since V is flat, the first summand is

kV . /td(TZ)ch(E) =rkV - index dg
b
=1k V -index dg.

To evaluate the contribution of x € Z to the second summand observe that the index formula for
the local system V restricted to the orbifold [{x}/Z,, ] reads

dim V#* = index

= / td(T{x})ch(zx)+€i Z tdy(TZ)chy(Ex ® V).
{x}

X g#1€Z,,
The first term on the right-hand side is simply dim V. Therefore,

1
- Z tdy (T, E)chy(Ex ® V) = dim VHx — dim V
x g#l1€Zy,

= —dim(V /V#*).
This finishes the proof of the index formula. O

Remark 11.7. Instead of working with punctured Riemann surfaces we could also work with orbifold
Riemann surfaces. Indeed, if 7: 3 — 3 is a branched cover, then 7R is not a local system on
Y but it is a local system on an orbifold whose underlying topological space is % but which has
non-trivial isotropy groups over the branching locus.

12 From branched covers to local systems

The following allows us to detect the failure of super-rigidity using local systems over punctured
Riemann surfaces.

Proposition 12.1. Letu: (3,j) — (M, J) be a non-constant J-holomorphic map. If t: (5,]) — (2, )
is a non-constant holomorphic map such that u o 7 is not rigid, there exists a finite set Z C ¥ and
an irreducible Euclidean local system V on Y = X\ Z whose monodromy representation has kernel of
finite index such that the following holds. Set 11 := u|s. For § € R denote by

N,V . : .
D5 I/Vcly’lzl"(Nu V) — LileO’l(Z, Nu®V)

. N,V N,V .
the extension of d,"~. For 0 < § < 1 the operatord s~ has a non-trivial kernel.
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Proof. Let Z be the branching locus of 7. Set
d=uon, Z:=rY2), 3= S\Z, 7= ”'i’ and 4= L~t|z

For every x € Z choose charts gzgx: D — Y and ¢,: D — 3 such that gi;x(O) =x, qu(D) NZ =0,
and

(P (2)) = Px(2™)
with r, € Ng denoting the ramification index of x. Let gy be a Riemannian metric on 3> and let
7: ¥ — [0, ) be a smooth function such that

¢*¢;gcyl = (dt)z + (da’)z and to¢,oy(t,a)=t.

Set
Geyl = 7"geyy and 7 i=to .

These satisfy
Ui higeyt = v ((d)? +(da)?) and 7oy o ¢(t,a) =ry - t.
By Proposition 11.3 for 0 < § < min{1/ry : x € Z} we have
ker b5 = kerd; and coker by s = coker d;.
Set V := 7,R. With respect to the isomorphisms
ot D(Ni) = T(Na® V) and s,: Q"Y(E, Nii) = L2Q% (3, Nu ® V)
from Proposition 3.5, we have
””*s”WCly’f = ”s”Wcly’f and |[77sllz = [lsllz

as well as

N. 1

.V . N .
(12.2) bu,a =Tt oD s O,

It follows that if bg{ has a non-trivial kernel, then so does bfj’az.
Decompose V into irreducible local systems

m

v=Prh

i=1

1

The operator DZ’(SZ decomposes accordingly as
N’K N’Ki @t?i
D5 = EB (bu,(s ) :
i=1
. . NV,
Consequently, if bg] has a non-trivial kernel, then the same must hold for d ;™ for at least one

ie{1,...,m}. O
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13 Local systems over punctured Riemann surfaces

We determine the codimensions of the loci at which the phenomenon described in Proposition 12.1
occurs. The this the crucial ingredient in the proof of Theorem 7.18.

Definition 13.1. Let > be a closed, connected surface and let Z C X be a finite subset. Let
N <m1(2\Z, xo) be a normal subgroup with finite index and set G := 71(2\Z, x9)/N. Let K be either
R, C, or H. Denote by ﬂgé’ f,(a)) the set of equivalence classes of triples (J;u, j; V) consisting of:

« an almost complex structure J € #(w),
. a embedded J-holomorphic map u: (%,j) — (M, J) of index zero, and

« an irreducible Euclidean local system V on ¥\Z which does not extend across any x € Z
and whose monodromy representation factors through G and has commuting algebra K

subject to the constraint

J € Ip(w).
The equivalence relation on the triples (J; u, j; V) is generated by reparametrization by Diff (2, Z) :=
{¢ € Diff(Z) : #|z = idz} and isomorphisms of local local systems. We set

ML () = ]_[ ML (@),
N

Set r := #Z. The projection map ./%gé’z(a)) — ﬂoz(a)) given by (J; [u,j; V]) — (J, [u,j]) is
a submersion with 2r—dimensional fibers. In light of Proposition 12.1, the subsets defined in the
following are responsible for the failure of super-rigidity.

Definition 13.2. In the situation of Definition 13.1, for every K € {R, CH}, N, and d € Ny we define

WL (o) = {(J; [u.j:V]) € MLLL - dimgkerd) 5~ =d for 0 < § < 1},

and
Wil () = ]_[ Wil ().
N

As we will see shortly, the subsets defined in the following are the most typical cause of the
failure of super-rigidity. They do not play a role in the proof of Theorem 7.18, but are of crucial
importance in Section 15.

Definition 13.3. In the situation of Definition 13.1, denote by

WA %7
WR’N’L.((/)) - %/RN’l(w)

the subset consisting of all (J; [u, j; V]) such that:
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1. u is an immersion,
2. dim(V/V#x) = 1 for every x € Z, and

3. every other local system over 2\Z whose monodromy representation factors through G
extends to X.

Set

Wigilo() = ]_[ Wi ().
N

Proposition 13.4. Assume the situation of Definition 13.1. Set k := dimg K. For every d € Ny the
following hold:

1. The subset ‘WKZ,’dZ(a)) - /%3%’2(40) has codimension at least k(d + (n — 1)r).

2. The subset WR%’I’Z.((A)) - ./%gli’ﬁ(w) is smooth and has codimension (1 + (n — 1)r).

3. The subset WR%IZ(@)\WR%IZ.(a)) C /%géﬁ(w) has codimension greater than (1 + (n — 1)r).

Proof. Set
P = ML ().

Define Hilbert space bundles 2 and % over & with fibers

Ltusv) = €W T(ND) and  Yypujvy = e TL2Q (5, Ni)
with 3 := 3\Z and & = u|;. Let (2, %) be a Banach space bundle over & whose fibers
are the spaces of bounded linear operators between the fibers of 2 and % . Define the section
N: P — L(X,Y) by
lwjV]) — Ta,ée
In Definition 2.1 we assumed D to be a map into Z(W*2I'(E), L>T(F)). However, this can
generalized to cover the situation at hand. In the situation above the Sobolev spaces are weighted
and E and F depend on p € . The weights are insubstantial because in light of the commutative
diagram
R LT UR POV
WEIT(NE) —=— 1200 (S, Nu)
leér leﬁr
1,2 Viss 0,15
efsfwcy’1 I[(Nu) — e5TLZQC’y1(Z, Ni)

we might as well work with e_&bf.j e%7 acting between unweighted spaces. As discussed in the

proof of Proposition 10.2, the depenaence of Eand F on p € & also is not an issue, because we can
locally trivialize the dependence on p € 9. The notion of equivariant flexibility is independent
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of the choice of trivialization. The Petri conditions are manifestly independent of the choice
of trivialization. Having explained this, we will consider (b‘f,v )peo as a family of linear elliptic
differential operators in this slightly generalized sense.

By Proposition 9.1, (b;,v )peo is strongly flexible and, therefore, G-equivariantly flexible for
every G. By hypothesis, b;)‘] satisfies Petri’s condition for every p € . Therefore, we can apply
Theorem 4.4.

Since V, = V does not extend over any x € Z, the subspaces Vl“X C V; defined in Proposi-
tion 11.5 must be non-trivial K;—-linear subspaces. Because the normal bundle N# has rank n — 1
and Z has precisely r elements, it follows from Proposition 11.5 (3) that

: NV
index bu’gl < =(n - Dkyr
and index DZ’(SZ" < Oforie€ {2,...,m}. For every (d,e) € NJ* Xx NJ" with %3 . # @ we must have
: NV,
1ndexbu’5*’ = k;(d; — e;).
In particular,
erz2di+(n—-1r
and e; > d; fori € {2,...,m}. Consequently, if d; = d, then
m m
(13.5) codim Py, > Y kidie; > ) kie; > k(d + (n - 1)r).
i=1 i=1
This directly implies (1). If K = R and d = 1, then the inequality (13.5) is sharp precisely when:
1. u is an immersion,
2. dim(V/VH#*X) = 1 for every x € Z, and
3. V, extends to X for every i € {1,...,m}.

This implies (2) and (3). |

14 Proof of Theorem 7.18

We want to show that % p(w), the set of super-rigid almost complex structures, is residual in
F(w). This will follow from combining the results of the preceding sections with Proposition 8.4.

For every g,r € Ny, fix a closed, connected surface 3, of genus g and a subset Z,, , C X, with
precisely r elements. Abbreviate

2g:2Zg,r

M () = ﬂfg(w), MLE (0) = ML 59 Zg.r

(w), and ‘WKgdr(a)) = WK,d (w).
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Denote by IT: /%Ou(co) — fp(w) and IT: %gér — #p(w) the projections to #p(w). These are
Fredholm maps of index 0 and 2r, respectively.
Recall from Definition 7.12 that super-rigidity consists of three conditions (1), (2), and (3). Set

Wor(0) = U )
g,r,deNy
Ke{R,C,H}

By Proposition 12.1, I(#51(w)) is the set of those complex structures for which (1) fails. By
definition, #p(w)\ %o(w) and II(#¢(w)) are the sets of almost complex structures for which (2)
and (3) fail, respectively. Consequently, the set #p(w)\ % p(w) of almost complex structures which
are fail to be super-rigid satisfy

Ip(0)\Jo,p(@) C Ip(0)\Foo(w) U I(We(w)) U TH(W51(w)).
Each of the sets in this union is meager:
1. By Proposition 8.3, % ¢(w) is residual.

2. By Theorem 8.6, #¢(w) has codimension 2(n — 2) > 2. Hence, by Proposition 8.4 its image
II(#¢(w)) under the index zero Fredholm map II is meager.

3. By Proposition 13.4, ‘Wé’;+l(w) C %Iflg’r has codimension at least

kd+(n—1r)>2r+1;
hence, its image under IT is meager.

This proves that %,(w) is residual. O

15 Super-rigidity along paths of almost complex structures

Even though super-rigidity holds for a generic almost complex structure, it may fail for some almost
complex structures along a generic path. The purpose of this section is to prove Theorem 15.2,
which describes this failure in detail.

Let M be a manifold and let @ = (w¢);[o,1] be a path symplectic structures. Set

Io@) = | ) Fo(or) and do(@):= (] Mo(or).
]

te€l0,1] te0,1

Jp(w) is a separable Banach manifold. The proof of Theorem 8.2 shows that .#y(w) is a separable
Banach manifold and IT: .#y(w) — fp(w) is a Fredholm map of index zero. Similarly, in the
notation of Section 14,

MLE () = U MLE (wr)

tel0,1]
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is a separable Banach manifold and IT: ﬂgg’r — #p(w) is a Fredholm map of index 2r.

Fix Jy € % p(wo) and J; € F p(w;). Denote by Fp = Fp(Jy. Ji; @) the separable Banach
manifold of paths of almost complex structures (J;)¢[o,1] from Jy to J; with J; € #p(w;). Define
the evaluation map ev: £, x [0,1] — 7p(w) by

ev ((Jo)repo.1]s tx) = Jr, -

Denote by M, = My(Jy, J1; ®) the space of triples consisting of a path of almost complex
structures (J:)refo,1] € Fp» £ € [0,1], and [us, jeltefo) € Mo(J:) = I"(J;) C M(w). In other
words, A is the fibered product

Mo = (Fpx[0,1]) X gp(00) M ().

Similarly, define
;ﬂgi’r = (fp %X [0,1]) X #p(w) /%Qg’r(w).

By slight abuse of notation, we also denote by
In: My — Fp and II: ./%Sf?r - Fp.

the canonical projection maps. The following result equips A, and ML %’ " with the structure
of a separable Banach manifold and exhibits II as a Fredholm map of index one and index 2r + 1,
respectively.

Proposition 15.1. Let X, Y, Z be Banach manifolds. Let f: X — Z be a smooth map and let
g: Y — Z be a submersion.

1. The fibered product X Xz Y, defined by
XxzY=gY:={(xy) e XxXY: f(x) = g(y)}
is a smooth submanifold of X X Y.
2. If f+ X — Z is a Fredholm map of index i, then the projection map
wy: XXzY—>Y
is a Fredholm map of index i as well.

3. If W C X is a submanifold of codimension d, then W Xz Y C X Xz Y is a submanifold of
codimension d as well.

Proof. Denote the diagonal in Y X Y by A. By definition,

XxzY=(fxg) ).
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Since g is a submersion, the map f X g is transverse to A. It thus follows from the Regular Value
Theorem that X X Y is smooth. This proves (1).
By definition, we have

T X Xz Y = {(£,9) e X @ T,Y : die f(R) = dyg(§)}.
Consequently,
kerd(x, )y = {(£,0) € X ® T,Y : dy f(X) = 0} = kerd, f

and
imd, )y = {g €T,Y :dyg(9) € im dxf}.
The latter gives rise to the following commutative diagram in which all rows and all columns are

exact:
kerdyg —— kerdyg

[ |

imd, 1y —— T,Y ——> cokerdy, )7y

|
o fos l

imdy f ——— Tp(x)Z ——>> cokerd,f.

A diagram chase constructs the dashed linear map making the bottom right square commutative.
A further diagram chase shows that this linear maps is an isomorphism. (Alternatively, one can
quotient imd(y, 7y and T,Y by ker d,g. The maps induced by d,g then become isomorphisms
and it follows that the cokernels are isomorphic.) This proves (2).

The argument used to prove (1) shows that W Xz Y is a smooth submanifold of X X7 Y. To
determine its codimension, consider the following diagram in which all rows and all columns are
exact:

T(x’y)W Xz Y —— T, W& TyY —> Tf(x)Z

[ [ -

T(x,y)X Xz Y ——> T, X® TyY —> Tf(x)Z

i i

N(x,y)W Xz Y ————- > N, W.

A diagram chase constructs the dashed linear map making the bottom left square commutative.
(Alternatively, replace T, W &T, Y by the kernel of the map to T¢(,)Z and do the same for T, X®T,Y.)
A further diagram chase shows that this linear maps is an isomorphism. This proves (3). O

Theorem 15.2 (cf. [Wen16, Section 2.4]). Let M be a manifold of dimension dim M = 2n > 6. Given
a path of symplectic structures @ = (w;)tefo,1], Jo € o, p(w0), and J; € F, p(w1), there is a residual
subset Fo p C F p(Jo, J1; @) such that for everyJ = (J;)re[o,1] € Fo,p the following hold:
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1. The path ] is a regular value of I1: My — £ p. In particular,
My () =1'()
is a 1-dimensional manifold with boundary.

2. For every t € [0, 1] every J;—holomorphic map of index zero is embedded, and every two
simple J,—holomorphic maps of index zero either have disjoint images or are related by a
reparametrization.

3. Letg,r € Ny, and (J;, t,[u, j; V]) € ./%Elg’r(]) =TI1"1(J). IfK = R, then
dimkerbl.i\f’(sK <1 for 0<dx1.

IfK € {C,H}, then
v

dimkerbf.z(;zo for 0<d<1.

4. Forevery g,r € Ny, the subset
W) = {(t, [, j:V]) € [0,1] X LT () : dimkerd - = 1 for s < 1}
is a smooth submanifold of codimension 2r + 1.
IfdimM > 8 andr > 0, then ‘%/R!flr(]) is empty.
If e [, j; V1) € 7y Q), then:
(a) dim(V/VH*X) =1 foreveryx € Z, and

(b) any irreducible local system on Z\Z which is isomorphic to V. but whose monodromy
representation factors through the same quotient as that of V extends to X.

Proof. Denote by £ the set of regular values of II.

Define .ﬂ(}[(w) and IT: ﬂ({l(w) — fp(w) in the obvious way. Set

W)= | ) Welor) c M (@).

tel0,1]

By Theorem 8.6, Wy (w) C ﬂou(a)) has codimension at least two. Therefore, ev*#¢(w) C M has
codimension two in according to Proposition 15.1. Since II: ¢ — £ p is a Fredholm map of
index one, it follows from Proposition 8.4 that

Fe = (ev' Wy (w))

is meager.
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Define Wg r(a)) and WR? lr.(a)) in the obvious way. Set

Krd = II(ev* r“ngr(a))) c Ffp. and

Foh . =T (ev (7 @\T (@) © £p.

Since IT: ./ll.Sflg(’r — £ p is a Fredholm map of index 2r + 1 and by Proposition 13.4, i’io

meager; moreover, ifd > 2,ord =1and K# R,ord =1,r > 1, and n > 4, then f 4 1s meager.
For n = 3, define £, p C F"¢ by

FNLr=F0 ) Fo,v | Fehav U #o.

r.d,g€Ny r,d,g€Ny r,g€Ny
Ke{C,H)

is

For n > 4, define £, c F'°® by

I E\Fop = Fr U U Ras2 Y U K U Fiu U e

r,d,geNy r,d,geNy r,g€Ny geNy
Ke{C,H} Ke{R,C.H}

By construction £, p is a residual subset of £, and every (J;);¢[o,1] € Fo,p satisfies (1), (2), (3),
and (4). |

A The normal Cauchy-Riemann operator

The normal Cauchy-Riemann operator for embedded J-holomorphic maps can be traced back to
the work of Gromov [Gro8s, 2.1.B]. It was observed by Ivashkovich and Shevchishin [IS99, Section
1.3], and Wendl [Wen1o, Section 3] that normal Cauchy-Riemann operator can be defined even
for non-embedded J-holomorphic maps, and that it plays an important role in understanding
the deformation theory of J-holomorphic curves. In this section we will briefly explain the
construction of Tu and Nu, and discuss the proof of Proposition 7.9.

Letu: (X, j) — (M, ]) be a non-constant /-holomorphic map. Denote by d,, ; the real Cauchy-
Riemann operator on u*TM. Denote by d,, j the complex linear part of d,, ;. This is a complex
Cauchy-Riemann operator and gives u*TM the structure of a holomorphic vector bundle

& = (u*TM, 314,]).

Denote by I % the tangent bundle of ¥ equipped with its natural holomorphic structure. The
derivatives of u induce a holomorphic map du: % — &. The quotient of this map, thought of as
a morphism of sheaves,

Q=¢8/9%

is a coherent sheaf on X. It is locally free outside the critical points of du. Denote by D the divisor of
the critical points of du, counted with multiplicity. Near a critical point z, of order k we can write
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du as (z — z0)* f(z) with f(z) # 0. Consequently, the torsion subsheaf of @ is Op, the structure
sheaf of D. The quotient sheaf
Nu = @/@D

is torsion free, and so locally free because dim¢ ¥ = 1; that is, #u is a holomorphic vector bundle.
Similarly, the sheaf
TJu = ker(& — Nu)

is locally free. We call /u the generalized normal bundle of u and Ju the generalized tangent
bundle of u.

Proposition A.1. We have
Jul/Tx =0p and Ju=T3I(D).

Proof. The following commutative diagram summarizes the construction of Ju and Au:

Op
|
Tz & Q
| o
Tu « & Nu
|
Jul|T>.

Since the columns and rows are exact sequences, it follows from the Snake Lemma that

This implies the assertion. O

Proof of Proposition 7.9. Let & be an Aut(Z, j)-invariant local slice around j of the Teichmiiller
space 7 (). Recall that d,, ;3;: T(W*TM)@T;S — Q%!(Z,u*TM) is the linearization of 9;, defined
in (7.2), restricted to C*(Z, M) X §. Denote by Tu the complex vector bundle underlying Ju and by
Nu the complex vector bundle underlying /u. As was mentioned before Definition 7.8, Tu ¢ u*TM
is the unique complex subbundle of rank one containing du(TX). Using a Hermitian metric on
u*TM we obtain an isomorphism

u'TM = Tu & Nu.

With respect to this splitting d;,,,, the restriction of d,,_jd; to I'(u*TM), can be written as



with buN 7 denoting the normal Cauchy-Riemann operator introduced in Definition 7.8. Since
6_%] odu=duodrs and Ju =T 3(D),

it follows that
5ZJ=5TM and f=0.

Denote by i: T;S — Q%!(Z,u*TM) the restriction of d, ;d; to T;S. The tangent space to the
Teichmiiller space I () at [j] can be identified with coker 07y = ker 5;2. With respect to this
identification, 1 is the restriction of du: TY — u*TM to ker 3;2. Consequently, we can write
dy,j0;: T(Tu) ® ;8 @ I'(Nu) — I'(Tu) ® I'(Nu) as

A gTu l *
d%fa’:( 0 0 ij)‘
u,

The short exact sequence
09> Ju—>0p—>0

induces the following long exact sequence in cohomology

0 - H%(93%) —» H*(9u) — H*(Op) - H(T =) —» HY(Tu) — 0.
It follows that

index A7y, = 2y(Tu) = 2y(T %) + 2h°(Op) = index drs + 2Z(du),

that ker drs — kerdry, is injective, and that coker Ors — coker dry, is surjective. The latter
implies that dr, @ 1 is surjective. Therefore, there are an exact sequence

0 — ker dr, ® 1 — ker du,jg] - kerbi\{] -0,

and an isomorphism
cokerd, ;07 = coker Di\]].

The kernel of dr, @ 1 contains aut(Z, j) = ker drs and

dimker 07, ® 1 = index d7, ® 1
= index dry + dim T;§
= index dr5, + dim T;$ + 2Z(du)
= dim aut(3, j) + 2Z(du).

This completes the proof of Proposition 7.9. O
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