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Abstract

In this article we introduce a method to construct G2–instantons on G2–manifolds arising

from Joyce’s generalised Kummer construction [Joy96a; Joy96b]. The method is based on

gluing ASD instantons over ALE spaces to �at bundles on G2–orbifolds of the form T 7/Γ. We

use this construction to produce non-trivial examples of G2–instantons.

Changes to the published version This is a revision of the article [Wal13a], which has been

published in Geometry & Topology, volume 17, issue 4, in 2013. It corrects a few minor issues

and includes some additional material. Dominic Joyce pointed out to me in my PhD viva that

parts of the beginning of the discussion in Section 6 in [Wal13a] were not quite phrased correctly.

This is recti�ed in the current version; in particular, De�nition 6.3 of the notion of gluing data

has been clari�ed. This version includes Theorem 1.6, which was already contained in my PhD

thesis [Wal13b, Theorem 2.4]. This theorem provides a �rst small step towards understanding

when Theorem 1.1 gives a complete description of allG2–instantons on certain topologically simple

bundles.

1 Introduction

The seminal paper [DT98] of Donaldson–Thomas has inspired a considerable amount of work

related to gauge theory in higher dimensions. Tian [Tia00] and Tao–Tian [TT04] made signi�cant

progress on important foundational analytical questions. Recent work of Donaldson–Segal [DS11]

and Haydys [Hay12] shed some light on the shape of the theories to be expected.

In this article we will focus on the study of gauge theory on G2–manifolds. These are 7–

manifolds equipped with a torsion-free G2–structure. The G2–structure allows us to de�ne a

special class of connections, called G2–instantons (see De�nition 3.1). These share many formal

properties with �at connections on 3–manifolds and it is expected that there are G2–analogues

of those 3–manifold invariants that are related to “counting �at connections”, that is, the Casson

invariant, instanton Floer homology, etc.

So far non-trivial examples ofG2–instantons are rather rare. By exploiting the special geometry

of the knownG2–manifolds some progress has been made recently. At the time of writing, there are
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essentially two methods for constructing compact G2–manifolds in the literature. Both yield G2–

manifolds close to degenerate limits. One is Kovalev’s twisted connected sum construction [Kov03],

which produces G2–manifolds with “long necks” from certain pairs of Calabi–Yau 3–folds with

asymptotically cylindrical ends. A technique for constructing G2–instantons on Kovalev’s G2–

manifolds has recently been proposed by Sá Earp [Sá 15; Sá 11]. The other (and historically the

�rst) method for constructing G2–manifolds is due to Joyce [Joy96a; Joy96b] and is based on

desingularising G2–orbifolds. In this article we introduce a method to construct G2–instantons on

G2–manifolds arising from Joyce’s construction.

To set up the framework for our construction, let us brie�y review the geometry of Joyce’s

construction: EquipT 7
with a �atG2–structure ϕ0 and let Γ be a �nite group of di�eomorphisms of

T 7
preserving ϕ0. Then Y0 B T 7/Γ is a �at G2–orbifold. The singular set S of Y0 can, in general, be

quite complicated. In this article we restrict to admissible G2–orbifolds Y0. That is, we assume that

each of the connected components S j of S has a neighbourhood modelled on (T 3×C2/G j )/Hj . Here

G j is a non-trivial �nite subgroup of SU(2) andHj is a �nite group acting by isometries onT 3
as well

as on C2/G j . Suppose we are given resolution data r = {(X j , ρ j )} for Y0, that is, for each j, an ALE

space X j asymptotic to C2/G j together with an isometric action ρ j of Hj on X j which is asymptotic

to the action of Hj on C2/G j . Then using Joyce’s generalised Kummer construction [Joy96a;

Joy96b] we can resolve the singularities in Y0 and produce a compact 7–manifold Y together with

a family of torsion-free G2–structures (ϕt )t ∈(0,T ).
In this article we will constructG2–instantons over (Y ,ϕt ) given gluing data g compatible with

the resolution data r for Y0. The notion of gluing data will be de�ned carefully in Section 6. For

now, it su�ces to say that g consists of

• a G–bundle E0 over Y0 together with a �at connection θ and

• for each j, a G–bundle Ej over X j together with a framed ASD instanton Aj

as well as various auxiliary data satisfying a number of compatibility conditions. Here we take G
to be a compact connected semi-simple Lie group, for example, G = SO(3).

Theorem 1.1. Let Y0 be an admissible �at G2–orbifold, let r be resolution data for Y0 and let g be
compatible gluing data. Suppose that the �at connection θ is acyclic and that the ASD instantons
Aj are in�nitesimally rigid. Then there is a constant T ′ ∈ (0,T ] and a G–bundle E over Y as well as
for each t ∈ (0,T ′) a connection At on E that is an acyclic G2–instanton over (Y ,ϕt ). Moreover, the
adjoint bundle gE associated with E satis�es

p1(gE ) = −
∑
j

kj PD[S j ] with kj B
1

8π 2

ˆ
X j

|FAj |
2,(1.2)

and 〈w2(gE ), Σ〉 =
〈
w2(gEj ), Σ

〉
(1.3)

for each Σ ∈ H2(X j )
Hj ⊂ H2(Y ). Here [S j ] ∈ H3(Y ,Q) is the rational homology class arising from S j

and H2(X j )
Hj denotes the Hj–invariant part of H2(X j ); see Remark 4.11.
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Remark 1.4. We will specify in De�nition 3.11 and De�nition 5.19, respectively, what it means for a

G2–instanton, and thus for a �at connection, being a particular instance of a G2–instanton, to be

acyclic and for an ASD instanton to be in�nitesimally rigid.

Remark 1.5. We equip the adjoint bundles gEj and gE with the inner product arising from the

negative of the Killing form on the Lie algebra g associated with G.

The proof of Theorem 1.1 is based on a gluing construction. The analysis involved is similar to

work on Spin(7)–instantons in Lewis’ DPhil thesis [Lew98], unpublished work of Brendle on the

Yang–Mills equation in higher dimension [Bre03] and Pacard–Ritoré’s work on the Allen–Cahn

equation [PR03]. From a geometric perspective our result can be viewed as a higher-dimensional

analogue of Kronheimer’s work on ASD instantons on Kummer surfaces [Kro91].

It is not too unreasonable to expect that under certain topological assumptions allG2–instantons

on G2–manifolds arsing from Joyce’s generalised Kummer construction close to the degenerate

limit come from a suitable generalisation of our construction. Optimistically, one could hope that

this will some day make the (so far conjectural) G2 Casson invariant accessible to computation.

The following result is a �rst step in this direction.

Theorem 1.6. Let Y0 be an admissible G2–orbifold all of whose singularities S j are modelled on
(T 3 ×C2/Z2)/Hj and let Y be the compact 7–manifold and let (ϕt )t ∈(0,T ) be the family of torsion-free
G2-structures obtained via Joyce’s generalised Kummer construction from resolution data for Y0.
Suppose that E is a SO(3)–bundle over Y with the property that

p1(E) = −
∑
j

εj

2

PD[S j ]

where εj = 1 if H2(X j )
Hj ⊂ H2(Y ) is non-trivial and w2(E) pairs non-trivially with H2(X j )

Hj and
εj = 0 otherwise. Suppose that (At )t ∈(0,T ) is a family of connections on E such that At is a G2–
instanton over (Y ,ϕt ). Then there exists a SO(3)–bundle E0 over Y0 together with a �at connection
θ , such that away from the singular set of Y0 the family of connections (At ) converges up to gauge
transformations to θ in C∞

loc
on Y0\S as t tends to zero.

In order to prove that Theorem 1.1 gives a complete description of the moduli space of G2–

instantons under the hypothesis of Theorem 1.6 one additionally needs to control the behaviour

of the family (At ) on the resolution locus in Yt and on the neck region between the resolution

locus and the regular part of Y0. This appears to be technically very challenging. Moreover, one

would need to either understand under which conditions the �at connection θ will be unobstructed

or extend Theorem 1.1 to handle the case of obstructed θ as well. Instead of directly producing

G2–instantons this latter generalisation of Theorem 1.6 would give a local description of the moduli

space of G2–instantons in terms of a Kuranishi model.

Further directions In this article we have only considered the simplest case of Joyce’s generalised

Kummer construction. Joyce’s construction in [Joy96a] can also handleG2–orbifolds with singular
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sets of codimension 6 which are resolved using ALE Calabi–Yau 3–folds. Using the work of Anda

Degeratu and myself on rigid HYM connections over ALE Calabi–Yau 3–folds arising as moduli

spaces ofG–constellations on C3
[DW16] much of the work in this chapter can be extended to this

situation. The latest version of Joyce’s construction [Joy00] can handle very complicated singular

sets which require QALE Calabi–Yau 3–folds in order to be resolved. Generalising Theorem 1.1 to

this setting is a daunting task.

Using ideas from [Wal17] it seems reasonable to extend Theorem 1.1 roughly as follows. Suppose

that (Yt ,ϕt ) is a family of G2–manifolds, which degenerates to a (not necessarily) �at G2–orbifold

(Y0,ϕ0) by bubbling of a family of ALE spaces X along an associative singular set S . Given a

G2–instanton B over Y0, one can construct a bundleM over S , whose �bre over x ∈ S is a moduli

space of ASD instantons on the ALE space Xx . If I is an unobstructed Fueter section ofM, i.e., the

linearisation of the Fueter operator at I has trivial cokernel, then one should be able to glue I and

B to produce a family of G2–instantons over (Yt ,ϕt ) for 0 < t � 1. In the situation considered

in this article M has discrete �bres; hence, if a section I exists, it automatically satis�es the

Fueter equation and is unobstructed. At the time of writing all known examples of degenerations

of G2–manifolds arise from Joyce’s generalised Kummer construction and thus have �at limits

(Y0,ϕ0); however, forthcoming work of Dominic Joyce and Spiro Karigiannis is expected to produce

examples with non-�at limits.

Outline of the article Sections 2, 3, 4 and 5 contain some foundational material onG2–manifolds

and G2–instantons as well as brief reviews of Joyce’s generalised Kummer construction and

Kronheimer and Nakajima’s work on ASD instantons on ALE spaces. The proof of Theorem 1.1

begins in earnest in Section 6, where we construct approximate G2–instantons from gluing data

and introduce weighted Hölder spaces adapted to the problem at hand. In Section 7 we set up

the analytical problem underlying the proof of Theorem 1.1 and discuss a model for the linearised

problem. We complete the proof of Theorem 1.1 in Section 8. A number of concrete examples of

G2–instantons with G = SO(3) are constructed in Section 9. The proof of Theorem 1.6 is given in

Section 10.

Acknowledgements This article is the outcome of work undertaken by the author for his PhD

thesis at Imperial College London, supported by European Research Council Grant 247331. I am

grateful to my PhD supervisor Simon Donaldson his encouragement and support. Moreover, I

would like to thank the anonymous referee for helpful comments on an earlier version of this

article.

2 Review of G2–manifolds

In this section we recall some basic de�nitions and results in G2–geometry. For a more compre-

hensive treatment we refer the reader to Joyce’s book [Joy00], speci�cally Chapter 10.
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The Lie group G2 can be de�ned as the subgroup of elements of GL(7) �xing the 3–form

(2.1) ϕ0 B dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356.

Here dx i jk is a shorthand for dx i ∧ dx j ∧ dxk and x1, . . . ,x7 are standard coordinates on R7
. The

particular choice of ϕ0 is not important. Any non-degenerate 3–form ϕ on R7
is equivalent to ϕ0

under a change of coordinates; see, for example, Salamon and Walpuski [SW17, Theorem 3.2]. Here

we say that ϕ is non-degenerate if for each non-zero vector u ∈ R7
the 2–form i(u)ϕ on R7/〈u〉 is

symplectic. It follows from the identity

(2.2) i(u)ϕ0 ∧ i(v)ϕ0 ∧ ϕ0 = 6дR7(u,v)volR7

that any element of GL(7) which preserves ϕ0 also preserves the standard inner product дR7 and

the standard volume form volR7 on R7
. Therefore, G2 is a subgroup of SO(7). In particular, every

non-degenerate 3–form ϕ on a 7–dimensional vector space induces an inner product and an

orientation on this vector space. As an aside, we should point out here that non-degenerate

3–forms constitute one of two open orbits of GL(7) in Λ3(R7)∗. For ϕ in the other open orbit, the

analogue of equation (2.2) yields an inde�nite metric of signature (3, 4). In particular, if we take

u = v to be a light-like vector, then i(u)ϕ is not a symplectic form on R7/〈u〉.
From the above discussion it is clear that a non-degenerate 3–form ϕ on Y is equivalent to

a reduction of the structure group of TY from GL(7) to G2, that is, a G2–structure. Moreover, ϕ
induces a Riemannian metric дϕ and an orientation on Y . The intrinsic torsion of the G2–structure

corresponding to ϕ can be identi�ed with ∇дϕϕ.

De�nition 2.3. A G2–manifold is a 7–manifold Y equipped with a torsion-free G2–structure ϕ,

that is,

∇дϕϕ = 0.

Remark 2.4. Analogously, one can de�ne the general notion of a G2–orbifold. (For a thorough

discussion of orbifolds we recommend the book of Adem–Leida–Ruan [ALR07].) In this article,

however, we will only encounter very simple G2–orbifolds of the form (Y/Γ,ϕ) where (Y ,ϕ) is a

G2–manifold and Γ is a �nite group of di�eomorphism of Y preserving ϕ.

There is a plethora of reasons to be interested in G2–manifolds. G2–manifold have holonomy

group Hol(дϕ ) ⊂ G2 which appears as one of the exceptional cases in Berger’s classi�cation

of holonomy groups of irreducible non-symmetric Riemannian manifolds [Ber55, Theorem 3].

G2–manifolds are spin manifolds and carry (at least) one non-zero parallel spinor (see Joyce [Joy00,

Proposition 10.1.6]) and, hence, are Ricci-�at and of relevance to theoretical physics. Moreover,

G2–manifolds carry a pair of calibrations in the sense of Harvey–Lawson [HL82]: the associative
calibration ϕ and the coassociative calibration ψ B ∗ϕ. This makes their submanifold geometry

very rich and interesting. Furthermore, it is very appealing to study gauge theory onG2–manifolds

as we will see in Section 3.

Example 2.5. The 7–torus T 7 = R7/Z7
equipped with the G2–structure ϕ0 de�ned in (2.1) is a

G2–manifold.
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De�nition 2.6. A hyperkähler manifold is a Riemannian manifold (X ,д) together with a triple

(I1, I2, I3) of parallel orthogonal complex structures satisfying I1I2 = −I2I1 = I3.

Remark 2.7. If (X ,д, I1, I2, I3) is a hyperkähler manifold, then the metric д is Kähler with respect to

each of complex structures a1I1 + a2I2 + a3I3 with (a1,a2,a3) ∈ S
2 ⊂ R3

.

Example 2.8. Let (X ,д, I1, I2, I3) be a hyperkähler 4–manifold. For i = 1, 2, 3 denote by ωi B

д(Ii · , · ) the Kähler form associated with the complex structure Ii . Choose an orthonormal triple

(δ 1,δ 2,δ 3) of constant 1–forms onT 3
. ThenT 3×X is aG2–manifold with torsion-freeG2–structure

ϕ de�ned by

ϕ B δ 1 ∧ δ 2 ∧ δ 3 + δ 1 ∧ ω1 + δ
2 ∧ ω2 − δ

3 ∧ ω3.

The metric and the orientation on T 3 × X induced by ϕ coincide with the product metric and the

product orientation. To see that, note that each cotangent space to X has a positive orthonormal

basis (e0, . . . , e3) with ei = Iie
0
, for i = 1, 2, 3, such that

(2.9)

ω1 = e0 ∧ e1 + e2 ∧ e3,

ω2 = e0 ∧ e2 − e1 ∧ e3,

ω3 = e0 ∧ e3 + e1 ∧ e2.

This immediately yields a orientation-preserving isometryTx (T
3 ×X ) → R7

identifying ϕ with ϕ0.
Note that in the current example the coassociative calibrationψ B ∗ϕ is given by

(2.10) ψ = 1

2
ω1 ∧ ω1 + δ

2 ∧ δ 3 ∧ ω1 + δ
3 ∧ δ 1 ∧ ω2 − δ

1 ∧ δ 2 ∧ ω3.

Remark 2.11. The above examples have holonomy strictly contained in G2. This is clear from their

construction, but can also be seen as a consequence of their topology since a compactG2–manifold

(Y ,ϕ) satis�es Hol(дϕ ) = G2 if and only if π1(Y ) is �nite; see Joyce [Joy00, Proposition 10.2.2].

The following observation is central for the construction of G2–manifolds.

Theorem 2.12 (Fernández and Gray [FG82, Theorem 4.9]). Let Y be a 7–manifold. Denote by
P ⊂ Ω3(Y ) the subspace of all non-degenerate 3–forms on Y and de�ne Θ : P→ Ω4(Y ) by

(2.13) Θ(ϕ) B ∗ϕϕ .

Here ∗ϕ is the Hodge ∗–operator associated with ϕ. Then aG2–structure ϕ is torsion-free if and only if

dϕ = 0 and dΘ(ϕ) = 0.

The key di�culty in constructing G2–manifolds comes from the fact that Θ is non-linear. It is

currently unknown which compact 7–manifolds do admit torsion-free G2–structures. All known

non-trivial compact examples arise by way of gluing constructions. One of those constructions

will be described in more detail in Section 4.

Before we move on, let us recall a few facts, going back at least to the work of Fernández–

Gray [FG82], that will be useful in the following. We refer the interested reader to Salamon and

Walpuski [SW17, Theorem 8.4] for a detailed proof.
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Proposition 2.14. There is a G2–invariant orthogonal splitting

Λ2(R7)∗ = Λ2

7
⊕ Λ2

14
,

where
Λ2

7
B {ω : ∗(ω ∧ ϕ0) = 2ω} and Λ2

14
B {ω : ∗(ω ∧ ϕ0) = −ω} .

Moreover, Λ2

14
is the kernel of the map ω 7→ ω ∧ ψ0, where ψ0 B ∗ϕ0, and can be identi�ed with

g2 ⊂ so(7) � Λ2(R7)∗.

3 Gauge theory on G2–manifolds

Let (Y ,ϕ) be a compact G2–manifold (or, more generally, a compact G2–orbifold), let ψ B Θ(ϕ)
and let E be a G–bundle over Y . Denote by A(E) the space of connections on E.

De�nition 3.1. A connection A ∈ A(E) on E is called a G2–instanton if it satis�es

(3.2) ∗ (FA ∧ ϕ) = −FA.

These equations have �rst appeared in the physics literature (see Corrigan, Devchand, Fairlie,

and Nuyts [CDFN83]) and were later brought to a wider attention by Donaldson and Thomas

[DT98, Section 3]. (3.2) can be thought of as a 7–dimensional version of the anti-self-duality

condition familiar from dimension four. As we will discuss shortly, G2–instantons also have a

striking similarity with �at connections over 3–manifolds.

Example 3.3. Flat connections are G2–instantons.

Example 3.4. Let X be a hyperkähler manifold, let E be a G–bundle over X and let A be an ASD

instanton on E, that is, a connection on E whose curvature FA is anti-self-dual. Then the pullback

of A to the G2–manifold T 3 × X from Example 2.8 is a G2–instanton:

∗(FA ∧ ϕ) = ∗
(
FA ∧ δ

1 ∧ δ 2 ∧ δ 3
)
= ∗X FA = −FA.

Here we used that FA ∧ ωi = 0 and ∗X denotes the Hodge ∗–operator on X .

Example 3.5. The Levi-Civita connection on aG2–manifold is aG2–instanton. To see that, observe

that at each point we can think of the Riemannian curvature tensor R as an element of S2g2 ⊂
Λ2 ⊗ gl(7), since Hol(дϕ ) ⊂ G2. But then it follows from Proposition 2.14 that ∗(R ∧ ϕ) = −R.

Since ϕ is closed, it follows from the Bianchi identity that G2–instantons are Yang–Mills

connections, that is, d
∗
AFA = 0. In fact, they are absolute minima of the Yang–Mills functional

YM: A(E) → R, since

(3.6) YM(A) B

ˆ
Y
|FA |

2
vol = 1

3

ˆ
Y
|FA + ∗(FA ∧ ϕ)|

2
vol −

ˆ
Y
〈FA ∧ FA〉 ∧ ϕ

and, by Chern–Weil theory, the second term is a topological constant depending only on E. The

energy identity (3.6) follows from a straight-forward computation using Proposition 2.14.
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Proposition 3.7. Let A ∈ A(E) be a connection on E. The following are equivalent:

1. A is G2–instanton.

2. A satis�es FA ∧ψ = 0.

3. There is a ξ ∈ Ω0(Y , gE ) such that

(3.8) ∗ (FA ∧ψ ) + dAξ = 0.

Proof. The equivalence of (1) and (2) follows immediately from Proposition 2.14. Obviously, (2)

implies (3). By the Bianchi identity and since dψ = 0 it follows from (3) that d
∗
AdAξ = 0. Hence, by

integration by parts, ˆ
Y
|dAξ |

2 =

ˆ
Y

〈
d
∗
AdAξ , ξ

〉
= 0.

Therefore dAξ = 0 and (3) implies (2). �

From Proposition 3.7 it becomes apparent that G2–instantons are rather similar to �at connec-

tions on 3–manifolds. In particular, if A0 is a G2–instanton on E, then there is a G2 Chern–Simons

functional CSψ : A(E) → R de�ned by

CSψ (A0 + a) B

ˆ
Y

〈
a ∧ dA0

a + 1

3
a ∧ [a ∧ a]

〉
∧ψ

whose critical points are precisely theG2–instantons on E. It is not entirely unreasonable to expect

that some of the 3–manifold invariants arising from the Chern–Simons functional, like the Casson

invariant and instanton Floer homology, have G2–analogues. This idea goes back at least to the

seminal paper of Donaldson–Thomas [DT98] and is one of the main motivations for studying

G2–instantons. Since (3.2) is invariant under the action of the group G of gauge transformations

of E, we can consider the moduli space of G2–instantons on E over (Y ,ϕ):

M(E,ϕ) B {A ∈ A(E) : FA ∧ψ = 0} /G.

Very roughly speaking, the conjectural G2 Casson invariant should be obtained by “counting”

M(E,ϕ). Whether there is a rigorous construction of such a G2 Casson invariant and whether it

can, in fact, be arranged to be invariant under isotopies of the G2–structure is an open question.

A brief discussion of parts of this circle of ideas can be found in Donaldson and Segal [DS11,

Section 6].

It is customary in gauge theory to work with local slices of the gauge group action. A

particularly useful slicing condition is to require that B ∈ A(E) be in Coulomb gauge with respect

to a �xed reference connection A ∈ A(E), that is, d
∗
A(B −A) = 0. (The importance of the Coulomb

gauge stems from the foundational work of Uhlenbeck [Uhl82a]. For a careful discussion of how

the Coulomb gauge is used in the construction moduli spaces we refer the reader to Donaldson

and Kronheimer [DK90, Section 4.2].) For a �xed connection A ∈ A(E) we consider the system of

equations

(3.9) ∗ (FA+a ∧ψ ) + dA+aξ = 0 and d
∗
Aa = 0
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for ξ ∈ Ω0(Y , gE ) and a ∈ Ω1(Y , gE ). This is simply (3.8) for A + a instead of A together with the

condition that A + a be in Coulomb gauge with respect to A. The linearisation LA : Ω0(Y , gE ) ⊕
Ω1(Y , gE ) → Ω0(Y , gE ) ⊕ Ω1(Y , gE ) of (3.9) is given by

(3.10) LA B

(
0 d

∗
A

dA ∗ (ψ ∧ dA)

)
.

This is a self-adjoint elliptic operator. If A ∈ A(E) is a G2–instanton, then LA controls the

in�nitesimal deformation theory of A as a G2–instanton.

De�nition 3.11. A G2–instanton A is called acyclic if the operator LA is invertible.

One can show that if every G2–instanton A on E is acyclic, then M(E,ϕ) is, in fact, a smooth

zero-dimensional manifold, that is, a discrete set.

4 Joyce’s generalised Kummer construction

EquipT 7
with a �atG2–structureϕ0, as in Example 2.5, and let Γ be a �nite group of di�eomorphisms

of T 7
preserving ϕ0. Then Y0 B T 7/Γ is a �at G2–orbifold. Denote by S the singular set of Y0 and

denote by S1, . . . , Sk its connected components.

De�nition 4.1. Y0 is called admissible if each S j has a neighbourhood isometric to a neighbourhood

of the singular set of (T 3 × C2/G j )/Hj . Here G j is a non-trivial �nite subgroup of SU(2) and Hj is

a �nite group acting by isometries on T 3
as well as on C2/G j .

Let Y0 be an admissible �at G2–orbifold. Then there is a constant ζ > 0 such that if we denote

by T the set of points at distance less that ζ to S , then T decomposes into connected components

T1, . . . ,Tk such that Tj contains S j and is isometric to (T 3 × B4

ζ /G j )/Hj . On Tj we can write

ϕ0 = δ
1 ∧ δ 2 ∧ δ 3 + δ 1 ∧ ω1 + δ

2 ∧ ω2 − δ
3 ∧ ω3,

where (δ 1,δ 2,δ 3) is an orthonormal triple of constant 1–forms on T 3
and where (ω1,ω2,ω3) is the

triple of Kähler forms associated with the standard hyperkähler structure (д, I1, I2, I3) on C2 � H.

De�nition 4.2. Let G be a �nite subgroup of SU(2). Then an ALE space asymptotic to C2/G is a

hyperkähler 4–manifold (X , д̂, Î1, Î2, Î3) together with a continuous map π : X → C2/G inducing a

di�eomorphism from X\π−1(0) to (C2\{0})/G such that

(4.3) ∇k (π∗д̂ − д) = O
(
r−4−k

)
and ∇k (π∗Îi − Ii ) = O

(
r−4−k

)
as r →∞ for i = 1, 2, 3 and k > 0. Here r : C2/G j → [0,∞) denotes the radius function.

We will remove the singularity in Y0 along S j by, roughly speaking, replacing each C2/G j with

an ALE space asymptotic to C2/G j . Due to work of Kronheimer [Kro89b; Kro89a], ALE spaces are

very well understood.
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Theorem 4.4 (Kronheimer [Kro89a, Theorems 1.1, 1.2, and 1.3]). LetG be a non-trivial �nite subgroup
of SU(2). Denote by X the real 4–manifold underlying the crepant resolution X̃/G. Then for each
three cohomology classes α1,α2,α3 ∈ H 2(X ,R) satisfying

(4.5) (α1(Σ),α2(Σ),α3(Σ)) , 0 ∈ R3

for each Σ ∈ H2(X ,Z) with Σ · Σ = −2 there is a unique ALE hyperkähler structure on X for which
the cohomology classes of the Kähler forms [ωi ] are given by αi . Moreover, each ALE space asymptotic
to C2/G is di�eomorphic to X̃/G and its associated triple of Kähler classes satis�es (4.5).

Remark 4.6. The crepant resolution X̃/G can be obtained from C2/G by a sequence of blow-

ups. The exceptional divisor E of X = X̃/G has irreducible components Σ1, . . . , Σk . By the

McKay correspondence [McK80], these components form a basis of H2(X ,Z) and the matrix

with coe�cients Ci j = −[Σi ] · [Σj ] is the Cartan matrix associated with the Dynkin diagram

corresponding to G in the ADE classi�cation of �nite subgroups of SU(2).

De�nition 4.7. A collection r = {(X j , ρ j )} consisting of, for each j, an ALE space X j asymptotic

to C2/G j together with an isometric action ρ j of Hj on X j which is asymptotic to the action of Hj
on C2/G j is called resolution data for Y0.

Suppose we are given resolution data r = {(X j , ρ j )}. Denote by πj : X j → C2/G j the resolution

map for X j . For t > 0 de�ne

(4.8) πj,t B tπj : X j → C2/G j

and set

(4.9) T̃j,t B
(
T 3 × π−1j,t

(
B4

ζ /G j
) )
/Hj and T̃t B

⋃
j

T̃j,t .

Using πj,t we can replace each Tj in Y0 by T̃j,t and thus obtain a compact 7–manifold Yt .

Remark 4.10. The di�eomorphism type of Yt is independent of t > 0. Hence, we will sometimes

drop the label t and pretend to be working with a �xed 7–manifold Y . However, at various points

it will be important to remember the precise way in which Yt was constructed.

Remark 4.11. The (co)homology groups and the fundamental group of Y can relatively easily be

computed from the above construction, the latter being especially important in view of Remark 2.11.

In particular, it can be seen that every Σ ∈ H2(X j ,Z) invariant under the action of Hj yields a

cohomology class Σ ∈ H2(Y ,Z). Also each component of singular set S j gives rise to a rational
homology class

(4.12) [S j ] B
1

|Hj |
(ι j,t )∗

(
T 3 × {x}

)
∈ H3(Y ,Q),

where ι j,t : T
3 × π−1j,t (B

4

ζ /G j ) → Y denotes the projection to T̃j,t followed by the inclusion into Y
and x denotes a point in π−1j,t (B

4

ζ /G j ).
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On T̃j,t there is a torsion-free G2–structure given by

ˆϕ j,t B δ 1 ∧ δ 2 ∧ δ 3 + t2δ 1 ∧ ω̂j,1 + t
2δ 2 ∧ ω̂j,2 − t

2δ 3 ∧ ω̂j,3.

Near the boundary of T̃j,t the 3–forms
ˆϕ j,t and ϕ0 are close to each other. In order to patch them

together note that there are 1–forms ϱ j,t,i on (C2\{0})/G j such that

t2(πj,t )∗ω̂j,i = ωi + dϱ j,t,i

with ∇kϱ j,t,i = t4O(r−3−k ) for k > 0; see [Joy00, Theorem 8.2.3]. Now, �x a smooth non-decreasing

function χ : [0, ζ ] → [0, 1] such that χ (s) = 0 for s 6 ζ /4 and χ (s) = 1 for s > ζ /2 and set

ω̃j,t,i B t2ω̂j,i − d(χ (|πj,t |) · π
∗
j,tϱ j,t,i ).

Then (πj,t )∗ω̃j,t,i and ωi agree on r−1[ζ /2,∞) and we can de�ne a 3–form
˜ϕt ∈ Ω

3(Yt ) by
˜ϕt B ϕ0

on Y0\Tt = Yt\T̃t and by

˜ϕt B δ 1 ∧ δ 2 ∧ δ 3 + δ 1 ∧ ω̃j,t,1 + δ
2 ∧ ω̃j,t,2 − δ

3 ∧ ω̃j,t,3

on T̃j,t . De�ne the function rt : Yt → [0, ζ ] by

(4.13) rt (p) B

{
|πj,t (y)| for p = [(x ,y)] ∈ T̃j,t

ζ for p ∈ Yt\T̃t

and set

(4.14) R j,t B T̃j,t ∩ r
−1
t [ζ /4, ζ /2] and Rt B

⋃
j

R j,t = r
−1
t [ζ /4, ζ /2].

OutsideRt the 3–form
˜ϕt de�nes a torsion-freeG2–structure, while onR j,t it satis�es∇k ( ˜ϕt− ˆϕ j,t ) =

O(t4) for k > 0 and similarly, for each �xed ε > 0, on r−1t [ε, ζ ] we have ∇k ( ˜ϕt − ϕ0) = O(t4) for

k > 0. In particular,
˜ϕt de�nes a G2–structure on Yt provided t > 0 is su�ciently small.

We equip Yt with the Riemannian metric д̃t B д ˜ϕt
associated with

˜ϕt .

Remark 4.15. Note that on the complement of T̃t the metric д̃t agrees with the �at metric д0 on

(T 7/Γ)\T and on T̃j,t\R j,t it agrees with the metric

д ˆϕj,t
= дR3 ⊕ t2дX j .

Here дR3 denotes the standard metric on R3
and дX j denotes the metric on X j . Moreover, since the

map ϕ 7→ дϕ is smooth, on R j,t we have ∇k (д̃t − дR3 ⊕ t2дX j ) = O(t
4) for k > 0 and, for each �xed

ε > 0, on r−1t [ε, ζ ] we have ∇k (д̃t − д0) = O(t
4) for k > 0.
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Theorem 4.16 (Joyce [Joy96a, Theorems A and B] and [Joy96b, Theorem 2.2.1]). There are constants
T , c > 0 and for each t ∈ (0,T ) a 2–form ηt on Yt such that ϕt B ˜ϕt + dηt de�nes a torsion-free
G2–structure and

(4.17) ‖dηt ‖L∞ 6 ct1/2.

Remark 4.18. In view of Theorem 2.12 the above is tantamount to saying that one can solve the

non-linear partial di�erential equation

(4.19) dΘ
(
˜ϕt + dηt

)
= 0

with estimates on dηt . For small ηt , the dominant part of this equation is essentially the Laplacian

on 2–forms. Now, as t > 0 decreases the size of dΘ( ˜ϕt ) becomes smaller and smaller, but at the

same time the mapping properties of the Laplacian degenerate. Solving (4.19) thus is a rather

delicate balancing act.

For our application we need to slightly strengthen the estimate in Theorem 4.16. Letwt (x ,y) B
t +min{rt (x), rt (y)}. For a Hölder exponent α ∈ (0, 1) de�ne

[f ]C0,α
0,t (U )

B sup

d (x,y)6wt (x,y)
wt (x ,y)

α | f (x) − f (y)|

d(x ,y)α
,

‖ f ‖C0,α
0,t (U )

B ‖ f ‖L∞(U ) + [f ]C0,α
0,t (U )

,

for a tensor �eld f over U ⊂ Yt . Here we use parallel transport to compare the values of f at

various points of U . If U is unspeci�ed, then we take U = Yt .

Proposition 4.20. The constants T , c > 0 in Theorem 4.16 can be chosen such that for all t ∈ (0,T )
we have

‖dηt ‖C0,α
0,t
6 ct1/2 and

Θ(ϕt ) − Θ(
ˆϕ j,t

)
C0,α
0,t (T̃j,t )

6 ct1/2.

For the proof of this result it will be helpful to note the following.

Proposition 4.21. For each µ > 0 and K ∈ N0 there exists a constant ε > 0 such that the following
holds for all t ∈ (0,T ) and p ∈ Yt : R B ε(t + rt (p)) is less than the injectivity radius of (Yt , д̃t ) at p
and if we identify TpY isometrically with R7 and denote by sR : B1 → BR(p) the map obtained by
multiplication with R followed by the exponential map, then

(4.22)

��∂k (
R−2s∗Rд̃t − дR7

) �� 6 µ
for all k ∈ {0, . . . ,K}. Here дR7 denotes the standard metric on R7.

Proof. From Remark 4.15 it is clear that we can �nd ε > 0 such that the above statement holds for

all p ∈ r−1t [ζ /8, ζ ]. Moreover, for p ∈ r−1t [0, ζ /8] inequality (4.22) is equivalent to��∂k (
R̃−2s∗

R̃
(дR3 ⊕ дX j ) − дR7

) �� 6 µ,
12



where R̃ B ε(1 + |πj (y)|) and p = [(x ,y)]. Because of (4.3) this holds for all ε 6 1

2
as long as |πj (y)|

is su�ciently large, say, |πj (y)| > N . For |πj (y)| 6 N it can be arranged to hold by choosing ε > 0

su�ciently small. �

Proof of Proposition 4.20. Note that the second part follows from the �rst and the construction of

˜ϕt , because Θ is a smooth map. To obtain the estimate on dηt recall from Joyce’s construction that

ηt solves a non-linear partial di�erential equation that can be written schematically as

(4.23) d
∗
dηt + P(dηt ,∇dηt ) = G(dηt , . . .) and d

∗ηt = 0;

see Joyce [Joy96a, Equation (33)].. The crucial points are that P(x ,y) is a smooth function which

depends linearly on y and satis�es P(0,y) = 0 and that there is a constant c > 0 such that

(4.24) ‖G(dηt , . . .)‖L∞ 6 ct1/2.

Now, de�ne

Dtσ B (d
∗σ + P(dηt ,∇σ ), dσ ).

Since dηt is small provided T > 0 is small, this a small perturbation of the operator d
∗ ⊕ d. We

extend Dt to an operator from Ω∗(Yt ) to itself by de�ning Dtσ = (d
∗ ⊕ d)σ for σ ∈ Ωk (Yt ) with

k , 3, so that it becomes an elliptic operator. We will now prove that there are constants c > 0

and ε ∈ (0, 1
2
) such that for all t ∈ (0,T ) and each p ∈ Yt the following holds:

(4.25) Rα [σ ]C0,α (BR/2(p)) 6 c
(
R‖Dtσ ‖L∞(BR (p)) + ‖σ ‖L∞(BR (p))

)
with R B ε(t + rt (p)). From this the asserted bound on [dηt ]C0,α

0,t
follows at once using (4.17), (4.23)

and (4.24), since on BR/2(p) we have wt 6 2ε−1R.

For µ > 0 choose ε > 0 according to Proposition 4.21 with K = 1. Let sR : B
7

1
→ BR(p) be as in

Proposition 4.21. We de�ne a rescaled operator D̃t,p : Ω∗(B1) → Ω∗(B1) by

D̃t,pσ B
(
R2s∗Rτ , s

∗
Rθ

)
for σ ∈ Ωk (B1), where (τ ,θ ) B Dt (s

−1
R )
∗σ ∈ Ωk−1(B1) ⊕ Ωk+1(B1). It follows from Theorem 4.16

and Proposition 4.21 that by choosing T , µ > 0 su�ciently small, we can arrange that for all

t ∈ (0,T ) and p ∈ Yt the rescaled operator D̃t,p is as close to d ⊕ d
∗
: Ω∗(B1) → Ω∗(B1) as we

wish. In particular, we can arrange that the family of operators D̃t,p is uniformly elliptic with

coe�cients uniformly bounded in C1
. Hence, by standard elliptic theory, we can �nd a constant

c > 0 independent of t ∈ (0,T ) and p ∈ Yt such that the following Lq estimate holds:

‖σ ‖W 1,q (B
1/2)
6 c

(
‖D̃t,pσ ‖Lq (B1) + ‖σ ‖Lq (B1)

)
.

Combined with the Sobolev embeddingW 1,q ↪→ C0,1−7/q
this yields

[σ ]C0,α (B
1/2)
6 c

(
‖D̃t,pσ ‖L∞(B1) + ‖σ ‖L∞(B1)

)
with c > 0 independent of t ∈ (0,T ) and p ∈ Yt . This, however, is equivalent to the estimate (4.25)

for the unscaled operator Dt . �
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Remark 4.26. Proposition 4.20 can be viewed as a quanti�cation of Joyce’s proof of the fact that ηt
is smooth. In a similar fashion, one can also obtain estimates on higher Hölder norms of dηt .

Remark 4.27. The kind of argument we used above goes back to work of [NW73, Theorem 3.1]. We

will encounter this line of reasoning again in the proofs of Proposition 5.10 and Proposition 7.11.

5 ASD instantons on ALE spaces

Let Γ be a �nite subgroup of SU(2), let X be an ALE space asymptotic to C2/Γ and let E be a

G–bundle over X . We denote by A(E) the space of connections on E.

De�nition 5.1. A framing at in�nity of E is a bundle isomorphism Φ : E∞ |U → π∗E |U where E∞ is

aG–bundle over (C2\{0})/Γ andU is the complement of a compact neighbourhood of the singular

point in C2/Γ.

Let θ be a �at connection on a G–bundle E∞ over (C2\{0})/Γ.

De�nition 5.2. Let Φ : E∞ |U → π∗E |U be a framing at in�nity of E. Then a connection A ∈ A(E)
is called asymptotic to θ at rate δ with respect to Φ if

(5.3) ∇k (Φ∗A − θ ) = O
(
rδ−k

)
for all k > 0. Here ∇ is the covariant derivative associated with θ .

De�nition 5.4. A framed ASD instanton asymptotic to θ (at rate δ ) is an ASD instanton A ∈ A(E)
on E together with a framing at in�nity Φ of E such that A is asymptotic to θ at rate δ with respect

to Φ. If no rate δ is speci�ed, then we take δ = −3.

Proposition 5.5. Let A ∈ A(E) be an ASD instanton on E with �nite energy, that is,
ˆ
X
|FA |

2
vol < ∞,

then there is a G–bundle E∞ over (C2\{0})/Γ together with a �at connection θ and a framing
Φ : E∞ |U → π∗E |U such that (5.3) holds with δ = −3

Proof. We extend the argument in Donaldson and Kronheimer [DK90, page 98]. The topological

space X̂ B X ∪ {∞} can be given the structure of an orbifold whose atlas contains the charts of

X as well as a uniformising chart at in�nity φ : Bε/Γ → X̂ which is constructed as follows. Fix

an orientation reversing linear isometry σ of R4
. We let Γ act on Bε by (д,x) 7→ σ−1(д · σ (x)) and

de�ne φ(0) B ∞ and φ(x) = π−1(σ (x)/|x |2). If д denotes the metric on X , then the conformally

equivalent metric д̂ B (1+ |π |2)−2д extends to X̂ as an orbifold metric. The metric is not necessarily

smooth, but only C3,α
; however, that does not cause any problems. One should think of X̂ as a

conformal compacti�cation of X in the same way that S4 is a conformal compacti�cation of R4
.
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Since the equation F+A = 0 as well as the energy are conformally invariant, we can think

of A as a �nite energy ASD instanton on (X̂\{∞}, д̂). By Uhlenbeck’s removable singularities

theorem [Uhl82b, Theorem 4.1], the pullback ofA to Bε\{0} extends to a Γ–invariant ASD instanton

over all of Bε . Hence, A extends to an ASD instanton Â on an orbifold G–bundle Ê over X̂ . Using

radial parallel transport from∞we obtain a trivialisation of Ê overφ(Bε/Γ) in which the connection

matrix representing Â vanishes at∞ = φ(0). Denote by ρ : Γ → G the monodromy representation

associated with Ê |∞. Associated with ρ there are a G–bundle E∞ over φ((Bε\{0})/Γ) and a �at

connection θ on E∞. The above trivialisation of Ê over φ(Bε/Γ) amounts to a bundle isomorphism

Φ : E∞ → Ê |φ(Bε \{0}/Γ) and the fact that the connection matrix representing Â vanishes at∞ = φ(0)
implies that ∇k (φ∗(Φ∗(Â)−θ )) = O(|x |1−k ) for all k > 0. By considering the action of the inversion

x 7→ σ (x)/|x |2 on k–fold derivatives of 1–forms one sees that ∇k (Φ∗A − θ ) = O(r−3−k ). �

Let us brie�y discuss moduli spaces of framed ASD instantons on E asymptotic to θ . For a

detailed discussion we refer the reader to Nakajima’s beautiful article [Nak90]. Fix a framing at

in�nity Φ of E, a rate δ ∈ (−3,−1) and denote by A(E,θ ) the space of all connections asymptotic

to θ at rate δ with respect to Φ. Similarly, de�ne G(E) to be the group of gauge transforma-

tions asymptotic to a constant element of G at in�nity at rate δ + 1 with respect to Φ. Denote

by д∞ : G(E) → G the homomorphism assigning to each gauge transformation its asymptotic

value at in�nity and let G0(E) B kerд∞ ⊂ G(E) be the based gauge group consisting of gauge

transformations asymptotic to the identity. Then the space

M(E,θ ) B {A ∈ A(E,θ ) : F+A = 0}/G0(E)

is called the moduli space of framed ASD instantons on E asymptotic to θ .

Remark 5.6. The space does not depend on the choice of δ ∈ (−3,−1). This is a consequence of

Proposition 5.5.

Remark 5.7. If we denote by ρ : Γ → G the monodromy representation associated with θ and by

Gρ B
{
д ∈ G : дρд−1 = ρ

}
the stabiliser of ρ, then Gρ ⊂ G � G(E)/G0(E) acts on M(E,θ ).

Theorem 5.8 ([Nak90, Theorem 2.6 and Proposition 5.1]). The moduli space M(E,θ ) is a smooth
hyperkähler manifold.

Formally, this can be seen as an in�nite-dimensional instance of a hyperkähler reduction (see

Hitchin, Karlhede, Lindström, and Roček [HKLR87]). The space A(E,θ ) inherits a hyperkähler

structure from X and the action of the based gauge group G0 has a hyperkähler moment map

given by µ(A) = F+A . To make this rigorous one needs to set up a suitable Kuranishi model

for M(E,θ ) along the lines of Donaldson and Kronheimer [DK90, Section 4.2.5]. This can be

done using weighted Sobolev space completions of A(E,θ ) and G0(E); see Nakajima [Nak90,

Section 2] for a detailed discussion. An important role is played by the operator δA : Ω1(X , gE ) →
Ω0(X , gE ) ⊕ Ω+(X , gE ) de�ned by

(5.9) δA(a) B
(
d
∗
Aa, d

+
Aa

)
which governs the in�nitesimal deformation theory of the ASD instanton A.
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Proposition 5.10. Let A ∈ A(E) be a �nite energy ASD instanton on E. Then the following holds.

1. If a ∈ kerδA decays to zero at in�nity, then ∇kAa = O(|π |
−3−k ) for all k > 0.

2. If (ξ ,ω) ∈ kerδ ∗A decays to zero at in�nity, then (ξ ,ω) = 0.

Remark 5.11. From the second part of this proposition one can deduce that the deformation theory of

framed �nite energy ASD instantons is always unobstructed; hence, M(E,θ ) is a smooth manifold

(see also [Nak90, Proposition 5.1]). By the �rst part the tangent space of M(E,θ ) at [A] agrees with

the L2 kernel of δA and thus the formal hyperkähler structure is indeed well-de�ned.

The proof of Proposition 5.10 rests on the following re�ned Kato inequality.

Proposition 5.12. Let A ∈ A(E) be an ASD instanton on E. If a ∈ Ω1(X , gE ) satis�es δAa = 0, then

(5.13) |d|a | | 6
√

3

4

��∇Aa��
on the complement of the vanishing locus of a.

Proof. Recall that the Kato inequality follows from the Cauchy–Schwarz inequality | 〈∇Aa,a〉 | 6
|∇Aα | |α |. If δAa = 0, then it is not hard to see that equality can only hold if ∇Aa = 0. This shows

that (5.13) holds with some constant ε < 1 instead of

√
3/4.

To see that one can take ε =
√
3/4 we follow an argument of Feehan [Fee01, Section 3]; however,

also note that we could simply read o� the value from the table given in Calderbank, Gauduchon,

and Herzlich [CGH00, Appendix]. We can write δA as a Dirac-type operator

δAa =
∑
i

γ (ei )∇
A
eia.

Here (ei ) is a local orthonormal frame and the Cli�ord multiplication γ is de�ned by γ (v)a B
(−iva, (v

∗ ∧ a)+), where v∗ denotes the dual of v with respect to the metric on X . For x ∈ X
with a(x) , 0 and d|a |(x) , 0 pick an orthonormal basis (ei ) of TxX with e1 B ∇|a |/|∇|a | |. Since

δAa = 0 and |γ (v)a | = |v | |a |, we have��
d|a |

��2 = ��∇e1 |a |��2 6 ��∇Ae1a��2
=

��γ (e1)∇Ae1a��2 = ���∑
i>2

γ (ei )∇
A
eia

���2 6 3

∑
i>2

��∇Aeia��2
and therefore

4

��
d|a |

��2 = 4

��∇Ae1a��2 6 3

∑
i

��∇Aeia��2 = 3

��∇Aa��2.
This �nishes the proof. �
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Proof of Proposition 5.10. First of all note that (1) implies (2): if δ ∗A(ξ ,ω) = 0, then d
∗
AdAξ = 0 and

d
+
AdAξ = [F

+
A , ξ ] = 0; therefore dAξ = O(|π |−3). Thus integration by parts yields dAξ = 0 and,

hence, ξ = 0. Similarly, one shows that ω = 0.

We will �rst explain why (1) for k = 0 implies the asserted estimates for k > 0 as well. The

argument is similar to that in Proposition 4.20. For x ∈ X set R B 1

2
(1 + |π (x)|). We claim that

there is a constant c = c(k) > 0 independent of x ∈ X such that

(5.14) Rk ‖∇kAa‖L∞(BR/2(x )) 6 c‖a‖L∞(BR (x ))

for all a ∈ kerδA. This clearly implies (1) for k > 0 given the statement for k = 0. For |π (x)|
su�ciently large, say |π (x)| > R0, the restriction ofA toBR(x) is arbitrarily close to a �at connection

by Proposition 5.5. We rescale to a ball of radius one and denote the rescaled connection by Ã and

the rescaling of δA by D̃x . Then the family of operators D̃x is uniformly elliptic with coe�cients

uniformly bounded in C1
. Therefore, there is a constant c > 0 independent of x ∈ X such that the

following Schauder estimates holds:∇k
Ã
a

L∞(B

1/2)
6 c

(
‖D̃xa‖Ck,α (B1)

+ ‖a‖L∞(B1)

)
.

If a is in the kernel of D̃x , the �rst term vanishes. Rescaling this inequality yields (5.14) for

a ∈ kerδA and |π (x)| > R. For 1/2 6 |π (x)| 6 R0, (5.14) follows from standard Schauder estimates.

We now prove (1) for k = 0. Recall, for example, from Freed and Uhlenbeck [FU91, Equa-

tion (6.25)], that the operator
˜δA : Ω1(X , gE ) → Ω0(X , gE ) ⊕ Ω+(X , gE ) de�ned by

˜δA(a) B
(d∗Aa,

√
2d
+
Aa) satis�es a Weitzenböck formula of the form

(5.15)
˜δ ∗A

˜δAa = ∇
∗
A∇Aa + {Ric,a} + {F

−
A ,a}.

Here { · , · } denote certain universal bilinear forms, whose precise form, however, is not important

for our purposes and Ric denotes the Ricci tensor of X . In our situation, since X is hyperkähler

and thus Ricci �at, the second term vanishes. Now, suppose that δAa = 0 and thus
˜δAa = 0. Then

Proposition 5.12, the identity

∆|a |2 + 2|∇Aa |
2 = 2

〈
a,∇∗A∇Aa

〉
(see [FU91, Equation (6.18)]) and the Weitzenböck formula (5.15) yield the following estimate on

the complement of the vanishing locus of a:

3∆|a |2/3 6 |a |−4/3
(
∆|a |2 + 8

3

��
d|a |

��2)
6 |a |−4/3

(
∆|a |2 + 2|∇Aa |

2
)

= 2|a |−4/3
〈
a,∇∗A∇Aa

〉
= 2|a |−4/3

(〈
˜δ ∗A

˜δAa,a
〉
+

〈{
F−A ,a

}
,a

〉)
6 O(|π |−4)|a |2/3.
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In the last step we used
˜δAa = 0 and |F−A | = O(|π |

−4), which is a consequence of Proposition 5.5.

Now, let U B {x ∈ X : a(x) , 0} and set f B |a |2/3. We will show that f = O(|π |−2) which is

equivalent to the desired decay estimate for a. It follows from the above that on U ,

∆f 6
c f

1 + |π |4

for some constant c > 0. Since f is bounded, by [Joy00, Theorem 8.3.6(a)], there is a д = O(|π |−1)
such that

∆д =

{
(∆f )+ on U

0 on X\U .

Here ( · )+ denotes taking the positive part. Since д is superharmonic and decays to zero at in�nity,

the maximum principle implies that д is non-negative. The function f − д is a subharmonic on

U , decays to zero at in�nity and is non-positive on the boundary of U ; hence, by the maximum

principle f 6 д and thus f 6 д = O(|π |−1). Now, (∆f )+ = O(|π |−5) on U and an application

of [Joy00, Theorem 8.3.6(b)] shows that we could, in fact, have chosen д such that д = O(|π |−2). It

follows that f = O(|π |−2) as desired. �

The dimension of M(E,θ ) can be computed using the following index formula.

Theorem 5.16 (Nakajima [Nak90, Theorem 2.7]). Let A be a framed ASD instanton asymptotic to θ .
Then the dimension of the L2 kernel of δA is given by

(5.17) dim kerδA = −2

ˆ
X
p1(gE ) +

2

|Γ |

∑
д∈Γ\{e }

χg(д) − dim g

2 − trд
.

Here p1(gE ) is the Chern–Weil representative of the �rst Pontryagin class of E and χg is the character
of Γ acting on g, the Lie algebra associated withG , via the monodromy representation ρ : Γ → G of θ .

Proof. Let us brie�y explain how to derive (5.17) from Nakajima’s formula, which can be written as

(5.18) dim kerδA = −

ˆ
X
(dim g + p1(gE )) ch

(
S+

)
Â(X )

+ dim gΓ +
1

|Γ |

∑
д∈Γ\{e }

χg(д)
trд

2 − trд
.

Here gΓ denotes the Γ–invariant part of g, S+ denotes the positive spin bundle on X , and ch(S+)
and Â(X ) denote the Chern–Weil representatives of the Chern character of S+ and the Â–genus of

X , respectively.

If A is the product connection on the trivial bundle rank 1 bundle and a lies in the L2 kernel

of δA, then it follows from the fact that X is Ricci-�at and the Weitzenböck formula (5.15) that

∇∗∇a = 0 and then by integration by parts, which is justi�ed because of the decay asserted by
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Proposition 5.10, that ∇a = 0. Since a lies in L2, it necessarily vanishes. Therefore dim kerδA = 0

and (5.18) yields ˆ
X
ch(S+)Â(X ) = 1 +

1

|Γ |

∑
д∈Γ\{e }

trд

2 − trд
.

By plugging this back into (5.18) we obtain

dim kerδA = −2

ˆ
X
p1(gE ) + dim g

Γ − dim g

+
1

|Γ |

∑
д∈Γ\{e }

(χg(д) − dim g)
trд

2 − trд
.

Since

1

|Γ |

∑
д∈Γ

(χg(д) − dim g) = dim g
Γ − dim g,

this leads to the index formula (5.17) given above. �

There is a very rich existence theory for ASD instantons on ALE spaces. Gocho–Nakajima [GN92]

observed that for each representation ρ : Γ → U(n) there is a bundle Rρ over X together with

an ASD instanton Aρ asymptotic to the �at connection determined by ρ, and if σ is a further

representation of Γ, thenAρ⊕σ = Aρ ⊕Aσ . Kronheimer–Nakajima [KN90] took this as the starting

point for an ADHM construction of ASD instantons on ALE spaces. One important consequence

of their work is the following rigidity result.

De�nition 5.19. An ASD instanton A is called in�nitesimally rigid if the L2 kernel of the linear

operator δA is trivial.

Theorem 5.20 ([KN90, Lemma 7.1]). For each ρ : Γ → U(n) the ASD instanton Aρ is in�nitesimally
rigid.

By combining this result applied to the regular representation with the index formula Kronheimer–

Nakajima derive a geometric version of the McKay correspondence [KN90, Appendix A]. Let ∆(Γ)
denote the Dynkin diagram associated with Γ in the ADE classi�cation of the �nite subgroups of

SU(2). Each vertex of ∆(Γ) corresponds to a non-trivial irreducible representation. We label these

by ρ1, . . . , ρk and denote the associated bundles by Rj and the associated ASD instantons by Aj .

Theorem 5.21 ([KN90, Appendix A]). The harmonic 2–forms c1(Rj ) =
i
2π tr FAj form a basis of

L2H2(X ) � H 2(X ,R) and satisfy ˆ
X
c1(Ri ) ∧ c1(Rj ) = −(C

−1)i j ,

whereC is the Cartanmatrix associated with∆(Γ). Moreover, there is an isometryκ ∈ Aut(H2(X ,Z), · )
such that {c1(Rj )} is dual to {κ[Σj ]}, where Σj are the irreducible components of the exceptional
divisor E of X̃/Γ. If X is isomorphic to X̃/Γ as a complex manifold, then κ = id.
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This result is very useful for computing the index of δA when A is constructed out of ASD

instantons of the form Aρ (by taking tensor products, direct sums, etc.).

Proposition 5.22. Let X be an ALE space asymptotic to C2/Zk . Denote by ρ j : Zk ‘ → ‘U (1) the
irreducible representation de�ned by ρ j (`) = exp( 2π ik j`). For n,m ∈ Zk , let En,m be the SO(3)–bundle
underlying R ⊕ (R∗n ⊗ Rn+m) and denote by An,m the ASD instanton on En,m induced by An and
An+m . Then An,m is in�nitesimally rigid, asymptotic at in�nity to the �at connection associated with
ρm and

1

8π 2

ˆ
X
|FAn,m |

2 =
(k −m)m

k

as well as
w2(gEn,m ) = c1(Rn+m) − c1(Rn) ∈ H

2(X ,Z2).

Proof. To see that An,m is in�nitesimally rigid apply Theorem 5.20 to An ⊕An+m and observe that

gEn,m = R ⊕ (R∗n ⊗ Rn+m) is a parallel subbundle of gRn ⊕Rn+m .

The energy of An,m can be computed using Theorem 5.21 or by noting that the �rst term in

the index formula (5.17) is precisely twice the energy and the second term is given by (− 2

k )–times

−
∑
д,e

χg(д) − dim g

2 − trд
=

k−1∑
j=1

1 − cos(2πmj/k)

1 − cos(2π j/k)
= (k −m)m.

The statement about the second Stiefel–Whitney class is clear. �

6 Approximate G2–instantons

Throughout this section, let Y0 be an admissible G2–orbifold, let r = {(X j , ρ j )} be resolution data

for Y0 and denote by (Yt ,ϕt )t ∈(0,T ) the family of G2–manifolds obtained from r via Theorem 4.16.

Denote byψt B Θ(ϕt ) the coassociative calibration on Yt . If θ is a �at connection on a G–bundle

E0 over Y0, then the monodromy of θ around S j induces a representation µ j : π1(Tj ,x j ) → G of

the orbifold fundamental group of Tj based at x j ∈ Tj\S j . We set

Kj B π1(Tj ,x j )/G j .

Both π1(Tj ) and Kj are extensions of Hj (by Z3 ×G j and Z3
respectively); however, they usually

do not split.

Remark 6.1. For a general de�nition of orbifold fundamental group we refer the reader to Adem,

Leida, and Ruan [ALR07, De�nition 1.50 and Section 2.2]. All orbifold fundamental groups π1(X )
encountered in this article can be identi�ed with the fundamental groups π1(X

reg) of the regular

part of the orbifold in question. This is a consequence of the next proposition which is a special

case of [TT04, Lemma 5.2].
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Proposition 6.2. If B is an open ball in Rn and S ⊂ B is a closed subset of Hausdor� codimension at
least four, then π1(B\S) = 1.

Proof. Note that for any given Lipschitz loop γ : S1 → B\S , the set of x ∈ B\S such that the cone

C(γ ,x) = {`x,γ (s)(t) : s, t ∈ [0, 1]}, where `x,y (t) = (1− t)x + ty, is contained in B\S has Hausdor�

codimension at least 2. Since any continuous loop is homotopic to a Lipschitz loop in B\S it follows

that any continuous loop is homotopic to a constant one. �

De�nition 6.3. A collection g =
(
(E0,θ ), {(x j , fj )}, {(Ej ,Aj , ρ̃ j )}

)
consisting of E0 and θ as above

as well as, for each j, the choice of

• a point x j ∈ Tj\S j together with a framing fj : (E0)x j → G of E0 at x j ,

• a G–bundle Ej over X j together with a framed ASD instanton Aj asymptotic at in�nity to

the �at connection on the bundle E∞, j over (C2\{0})/G j induced by the representation µ j |G j

and

• an action ρ̃ j of Kj on Ej covering the action of Kj on X j induced by ρ j

is called gluing data compatible with r = {(X j , ρ j )} if

• the action ρ̃ j of Kj on Ej preserves Aj and is asymptotic at in�nity, with respect to the

framing associated with Aj , to the action of Kj on E∞, j . Note that the action of Hj on

E∞, j is induced from the action of π1(Tj ,x j ) on the trivial bundle G × (C2\{0}) given by

h · (д,x) =
(
(µ j (h) · д,h · x)

)
.

We should point out here that it is by far not always possible to extend a choice of (E0,θ ) and

{(Ej ,Aj )} to compatible gluing data: the choice of ρ̃ j is essentially dictated by θ ; however, we

cannot always �nd an Aj which is preserved by ρ̃ j—in other words: the bundleM of moduli space

of ASD instantons has no section at all. This will become clearer from the discussion in Section 9.

Before we proceed to construct approximate G2–instantons, we introduce weighted Hölder

norms. It will become more transparent over the course of the next two sections that these are

well adapted to the problem at hand. We de�ne weight functions by

wt (x) B t + rt (x) and wt (x ,y) B min{wt (x),wt (y)}.

For t ∈ (0,T ), a Hölder exponent α ∈ (0, 1) and a weight parameter β ∈ R we de�ne

[f ]C0,α
β ,t (U )

B sup

d (x,y)6wt (x,y)
wt (x ,y)

α−β | f (x) − f (y)|

d(x ,y)α
,

‖ f ‖L∞β ,t (U ) B
w−βt f


L∞(U ),

‖ f ‖Ck,α
β ,t (U )

B
k∑
j=0

∇j f L∞β−j,t (U ) + [
∇j f

]
C0,α
β−j,t (U )

.
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Here f is a section of a vector bundle overU ⊂ Yt equipped with an inner product and a compatible

connection. On tensor bundles associated with Yt we use the metrics induced by д̃t ; however,

in view of Proposition 4.20, we could equivalently use those induced by ϕt = ˜ϕt + dηt . We use

parallel transport to compare the value of f at di�erent points in Y . If U is not speci�ed, then we

take U = Yt . We denote by Ck,α
β,t the Banach space Ck,α

equipped with the norm ‖ · ‖Ck,α
β ,t

Remark 6.4. For �xed t ∈ (0,T ) and β ∈ R, the norms ‖ · ‖Ck,α
β ,t

and are ‖ · ‖Ck,α equivalent, but

not uniformly so as t > 0 tends to zero.

Note that, if β = β1 + β2, then

(6.5) ‖ f · д‖Ck,α
β ,t
6 ‖ f ‖Ck,α

β
1
,t
· ‖д‖Ck,α

β
2
,t
.

Also for β > γ we have

(6.6) ‖ f ‖Ck,α
β ,t
6 tγ−β ‖ f ‖Ck,α

γ ,t
.

Proposition 6.7. Let g be gluing data compatible with r. Then there is a constant c > 0 and for each
t ∈ (0,T ) a G–bundle Et over Yt together with a connection Ãt satisfying

(6.8)

FÃt ∧ψt C0,α
−2,t
6 ct1/2.

Moreover, the adjoint bundle gEt associated with Et satis�es

(6.9) p1(gEt ) = −
∑
j

kj PD[S j ] with kj B
1

8π 2

ˆ
X j

|FAj |
2

and

(6.10) 〈w2(gEt ), [Σ]〉 = 〈w2(gEj ), [Σ]〉

for each [Σ] ∈ H2(X j )
Hj ⊂ H2(Yt ).

Proof. The choices of ρ̃ j and mj de�ne a lift of the action of Z3 oHj on R3 × X j to the pullback of

Ej to R3 × X j . Passing to the quotient yields a G–bundle over (T 3 × X j )/Hj which we denote by

Ej , by abuse of notation. It follows from the compatibility conditions that the pullback of Aj to

R3 × X j passes to the quotient and induces a connection on Ej which we denote by Aj , again by

abuse of notation.

Fix t ∈ (0,T ). Recall that in (4.14) we de�ned R j,t B T̃j,t ∩ r
−1
t [ζ /4, ζ /2] with T̃j,t and rt as

de�ned in (4.9) and (4.13), respectively. By the compatibility conditions the monodromy of Aj
along S j on the �bre at in�nity matches up with the monodromy of θ along E0 |Sj . Thus, via parallel

transport the framing of E0 at x j and the framing of Ej yield an identi�cation of E0 |Rj,t with Ej |Rj,t .
Patching E0 and the Ej via this identi�cation yields the bundle Et .
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Under the identi�cation of E0 |Rj,t with Ej |Rj,t , we can write

(6.11) Aj = θ + aj with ∇kaj = t2+kO(r−3−kt ),

because of Remark 4.15 and Proposition 5.10. Fix a smooth non-increasing function χ : [0, ζ ] →
[0, 1] such that χ (s) = 1 for s 6 ζ /4 and χ (s) = 0 for s > ζ /2. Set χt B χ ◦ rt . After cutting o� Aj
to θ + χt · aj it can be matched with θ and we obtain the connection Ãt on the bundle Et .

To estimate FÃ ∧ ψt note that on Yt\T̃t the connection Ãt is �at. Thus we can focus our

attention on T̃j,t . By the de�nition of Ãt we have

FÃt = χtFAj + dχt ∧ aj +
χ 2t − χt

2

[aj ∧ aj ].

The last two terms in this expression are supported in R j,t and of order t2 in C0,α
by (6.11). By

Example 3.4 and Proposition 4.20 we haveFAj ∧ψt

C0,α
−2,t (T̃j,t )

=
FAj ∧

(
ψt − ˆψt

)
C0,α
−2,t (T̃j,t )

6 ct1/2
FAj


C0,α
−2,t
.

It follows from Proposition 5.5 and Remark 4.15 that

∇kFAj = t2+kO(r−4−kt ).

This implies that FAj


C0,α
−4,t (T̃j,t )

6 ct2

and, hence, FAj


C0,α
−2,t (T̃j,t )

6 c

by (6.6) with c > 0 independent of t ∈ (0,T ). Now, putting everything together yields (6.8).

Let ι j,t : T
3 × π−1j,t (B

4

ζ /G j ) → Y be as in Remark 4.11. Then ι∗j,tgEt is isomorphic to the pullback

of gEj toT 3 × π−1j,t (B
4

ζ /G j ). This implies (6.10) by naturality of Stiefel–Whitney classes. To compute

p1(gEt ) we use Chern–Weil theory to represent it as p1(gEt ) = −
1

8π 2
tr(FÃt ∧ FÃt ). We can write

this as p1(gEt ) =
∑

j pj , where pj are compactly supported 4–forms on T̃j,t . Recalling the de�nition

of [S j ] in (4.12) and considering the behaviour of Poincaré duality with respect to coverings we see

that in order to prove (6.9) we have to show

ι∗j,tpj = kj PD
[
T 3 × {x}

]
∈ H 4

c
(
T 3 × π−1j,t

(
B4

ζ /G j
)
,R

)
.

From our construction of Ãt it follows that the form ι∗j,tpj is the pullback of a compactly supported

4–form on X j , which we can write as − 1

8π 2
tr(FÃj ∧ FÃj ) where Ãj = Aj + α and, by slight abuse

of notation, α = (1 − χt )aj . Consequently, ι∗j,tpj is a multiple of PD[T 3 × {x}]. To see that the

multiplicity is precisely kj we use the Chern–Simons 3–form (see Donaldson and Kronheimer

[DK90, Equation (2.1.17)]) to write

tr

(
FÃj
∧ FÃj

)
− tr

(
FAj ∧ FAj

)
= d tr

(
α ∧ dAjα +

1

3
α ∧ [α ∧ α]

)
.
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By Proposition 5.10 the 1–form α decays su�ciently fast to conclude from Stokes’ theorem that

−
1

8π 2

ˆ
X j

tr

(
FÃj
∧ FÃj

)
= −

1

8π 2

ˆ
X j

tr

(
FAj ∧ FAj

)
=

1

8π 2

ˆ
X j

��FAj

��2 = kj .
This completes the proof. �

Remark 6.12. If we identify all Yt with one �xed Y , then the isomorphism type of the bundles Et
does not depend on t ∈ (0,T ). We can therefore think of them as one �xed G–bundle E over Y .

7 A model operator on R3 × ALE

In order to prove Theorem 1.1 we need to �nd (ξt ,at ) ∈
(
Ω0 ⊕ Ω1

)
(Yt , gEt ) such that

(7.1) ∗t
(
FÃt+at ∧ψt

)
+ dÃt+at ξt = 0

for t ∈ (0,T ′) provided T ′ ∈ (0,T ] is su�ciently small. Here ∗t denotes the Hodge ∗–operator

associated with ϕt . Equation (7.1) together with the Coulomb gauge condition d
∗

Ãt
at = 0 can be

written as

(7.2) Ltat +Qt (at ) + ∗t
(
FÃt ∧ψt

)
= 0.

Here we use the notation at B (ξt ,at ), the linear operator Lt B LÃt is de�ned as in (3.10) with

ψ = ψt B ∗tϕt and Qt is de�ned by

(7.3) Qt (a) B
1

2
∗t ([a ∧ a] ∧ψt ) + [a, ξ ].

The key to solving (7.2) is a good understanding of the linearisation Lt . In this section, we study a

model for Lt on r−1t ([0, ζ )).
Let X be an ALE space, let A be a G–bundle over X and let A be a �nite energy ASD instanton

on E. Fix an orthonormal triple (δ 1,δ 2,δ 3) of constant 1–forms on R3
and denote by (ω1,ω2,ω3)

the triple of Kähler forms associated with X . Consider R3 × X as a G2–manifold as in Example 2.8.

Denote by pR3 : R3 × X → R3
and pX : R3 × X → X the projection onto the �rst and second

factor, respectively. Slightly abusing notation, we denote the respective pullbacks of E and A to

R3 × X via pX by E and A as well. As in (3.10) we de�ne LA : Ω0(R3 × X , gE ) ⊕ Ω1(R3 × X , gE ) →
Ω0(R3 × X , gE ) ⊕ Ω1(R3 × X , gE ) by

LA =

(
0 d

∗
A

dA ∗(ψ ∧ dA)

)
withψ as in (2.10).
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Proposition 7.4. If we identify p∗R3
T ∗R3 with p∗XΛ

+T ∗X via δ 1 7→ ω1, δ 2 7→ ω2, δ 3 7→ −ω3 and
accordingly

Ω0(R3 × X , gE ) ⊕ Ω1(R3 × X , gE )

= Ω0
(
R3×X ,p∗X

[
(R⊕Λ+T ∗X⊕T ∗X )⊗gE

] )
,

then the operator LA can be written as LA = F + DA, where

F (ξ ,ω,a) =
3∑
i=1

(
− 〈∂iω,ωi 〉, ∂iξ · ωi , Ii∂ia

)
and DA =

(
0 δA
δ ∗A 0

)
.

Here δA : Ω1(X , gE ) → Ω0(X , gE ) ⊕ Ω+(X , gE ) denotes the linear operator de�ned in (5.9). Moreover,

(7.5) L∗ALA = ∆R3 +

(
δAδ

∗
A

δ ∗AδA

)
where∆R3 = −

∑
3

i=1 ∂
2

i and ∂i denotes taking the derivative of a section ofp
∗
X [(R⊕Λ

+T ∗X⊕T ∗X )⊗gE )]
in the direction of the i th coordinate on R3.

Proof. It is a straight-forward computation to verify that LA = F + DA. It is also easy to see that

F ∗F = ∆R3 and that F ∗DA + D
∗
AF = 0. This immediately implies (7.5). �

To understand the properties of LA we work with weighted Hölder norms. We de�ne weight

functions by

w(x) B 1 + |π (pX (x))| and w(x ,y) B min{w(x),w(y)}.

Here π : X → C2/G denotes the resolution map associated with the ALE space X . For a Hölder

exponent α ∈ (0, 1) and a weight parameter β ∈ R we de�ne

[f ]C0,α
β (U )

B sup

d(x,y)6w (x,y)
w(x ,y)α−β

| f (x) − f (y)|

d(x ,y)α
,

‖ f ‖L∞β (U ) B
w−β f L∞(U ),

‖ f ‖Ck,α
β (U ) B

k∑
j=0

∇j f L∞β−j (U ) + [
∇j f

]
C0,α
β−j (U )

.

Here f is a section of a vector bundle over U ⊂ R3 × X equipped with an inner product and a

compatible connection. We use parallel transport to compare the values of f at di�erent points.

If U is not speci�ed, then we take U = Yt . We denote by Ck,α
β the subspace of elements f of the

Banach space Ck,α
with ‖ f ‖Ck,α

β
< ∞ and equip it with the norm ‖ · ‖Ck,α

β
.

Under the assumptions of Section 6 and with g denoting compatible gluing data suppose that

X = X j and that A = Aj . De�ne ι̃ j,t : R3 × π−1j,t (B
4

ζ /G j ) → T̃j,t by

ι̃ j,t (x ,y) B [(tx ,y)].
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For a parameter β ∈ R and a = (ξ ,a) ∈ Ω0(Yt , gEt ) ⊕ Ω1(Yt , gEt ) we de�ne

(7.6) sβ,t (ξ ,a)(x ,y) B t β−1
(
t(ι̃ j,t )

∗ξ , (ι̃ j,t )
∗a

)
.

Proposition 7.7. There is a constant c > 0 such that for t ∈ (0,T )

1

c ‖a‖Ck,α
β ,t (T̃j,t )

6 ‖sβ,ta‖Ck,α
β (R3×π−1j,t (B

4

ζ /G j ))
6 c ‖a‖Ck,α

β ,t (T̃j,t )
,

‖Lta − s
−1
β−1,tLAj sβ,ta‖C0,α

β−1,t (T̃j,t )
6 ct1/2‖a‖C1,α

β ,t (T̃j,t )
.

Proof. The map ι̃ j,t pulls back the metric on T̃j,t associated with
ˆϕt , that is д ˆϕt = дR3 ⊕ t2дX j ,

to t2(дR3 ⊕ дX j ). This implies the �rst estimate in view of Remark 4.15. The second estimate is

immediate from the construction of Ãt and Proposition 4.20. �

Proposition 7.8. Let β ∈ (−3, 0). Then a ∈ C1,α
β is in the kernel of LA : C1,α

β → C0,α
β−1 if and only if it

is given by the pullback of an element of the L2 kernel of δA to R3 × X .

The proof of Proposition 7.8 relies on the following lemma which we will prove in the Ap-

pendix A.

De�nition 7.9. A Riemannian manifold X is said to be of bounded geometry if it is complete, its

Riemann curvature tensor is bounded from above and its injectivity radius is bounded from below.

A vector bundle over X is said to be of bounded geometry if it has trivialisations over balls of a

�xed radius such that the transitions functions and all of their derivatives are uniformly bounded.

We say that a complete oriented Riemannian manifold X has subexponential volume growth if for

each x ∈ X the function r 7→ vol(Br (x)) grows subexponentially, that is, vol(Br (x)) = o(exp(cr ))
as r →∞ for every c > 0.

Lemma 7.10. Let E be a vector bundle of bounded geometry over a Riemannian manifoldX of bounded
geometry and with subexponential volume growth, and suppose that D : C∞(X ,E) → C∞(X ,E) is a
uniformly elliptic operator of second order whose coe�cients and their �rst derivatives are uniformly
bounded, that is non-negative, such that 〈Da,a〉 > 0 for all a ∈W 2,2(X ,E), and formally self-adjoint.
If a ∈ C∞(Rn × X ,E) satis�es

(∆Rn + D)a = 0

and ‖a‖L∞ is �nite, then a is constant in the Rn–direction, that is a(x ,y) = a(y). Here, by slight abuse
of notation, we denote the pullback of E to Rn × X by E as well.

Proof of Proposition 7.8. Suppose a ∈ C1,α
β satis�es LAa = 0. Then a is smooth by elliptic regularity

and satis�es L∗ALAa = 0. By De�nition 4.2 and by Proposition 5.5 both R3 × X and gE have

bounded geometry. Moreover, by Proposition 7.4, L∗ALA = ∆R3 +D∗ADA and D∗ADA is non-negative,

self-adjoint, uniformly elliptic of second order and its coe�cients and their �rst derivatives are

uniformly bounded as can be seen from Proposition 5.5. Therefore, we can apply Lemma 7.10 to

conclude that a is invariant under translations in the R3
–direction and, hence, by Proposition 5.10

and Proposition 7.4 must be the pullback of an element in the L2 kernel of δA. �
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Proposition 7.11. For β ∈ R there is a constant c > 0 such that

‖a‖C1,α
β
6 c

(
‖LAa‖C0,α

β−1
+ ‖a‖L∞β

)
.

Proof. This is a standard result; see Remark 4.27.

The desired estimate is local in the sense that is enough to prove estimates of the form

‖a‖C1,α
β (Ui )

6 c
(
‖LAa‖C0,α

β−1
+ ‖a‖L∞β

)
with c > 0 independent of i , where {Ui } is a suitable open cover of R3 × X .

Fix R > 0 suitably large and set U0 B {(x ,y) ∈ R3 × X : |π (x)| 6 R}. Then there clearly is a

constant c > 0 such that the above estimate holds for Ui = U0. Pick a sequence (xi ,yi ) ∈ R3 × X
such that ri B |π (yi )| > R and the balls Ui B Bri /8(xi ,yi ) cover the complement of U0. On Ui , we

have a Schauder estimate of the form

‖a‖L∞(Ui ) + r
α
i [a]C0,α (Ui ) + ri

∇AaL∞(Ui ) + r 1+αi
[
∇Aa

]
C0,α (Ui )

6 c
(
ri
LAaL∞(Vi ) + r 1+αi

[
LAa

]
C0,α (Vi )

+ ‖a‖L∞(Vi )
)

where Vi = Bri /4(xi ,yi ) and a = (ξ ,a). By arguing as in Proposition 4.20 and Proposition 5.10 one

shows that the constant c > 0 can be chosen to work for all i simultaneously. Since on Vi we have

1

2
ri 6 w 6 2ri , multiplying the above Schauder estimate by r−βi yields the desired local estimate.

�

8 Deforming to genuine G2–instantons

We continue with the assumptions of Section 6 and we suppose that the connection Ãt onG–bundle

Et over Yt was constructed using Proposition 6.7 from a choice of compatible gluing data g. In this

section we will prove the following result which will complete the proof of Theorem 1.1.

Proposition 8.1. Suppose that θ is acyclic and that each Aj is in�nitesimally rigid. Then there are
constantsT ′ ∈ (0,T ] and c > 0 as well as, for each t ∈ (0,T ′), at = (ξt ,at ) ∈ Ω

0(Yt , gEt )⊕Ω
1(Yt , gEt )

such that

(8.2) ∗t
(
FÃt+at ∧ψt

)
+ dÃt+at ξt = 0

and ‖at ‖C1,α
−1,t
6 ct1/2. Moreover, the G2–instanton At B Ãt + at is acyclic.

As discussed in Section 7 it is crucial to understand the properties of the linear operator Lt .
The key to proving Proposition 8.1 is the following result.

Proposition 8.3. Given β ∈ (−3, 0) there are constants T ′ ∈ (0,T ] and c > 0 such that for t ∈ (0,T ′)
we have

‖a‖C1,α
β ,t
6 c‖Lta‖C0,α

β−1,t
.
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Before we move on to prove this, let us quickly show how it is used to establish Proposition 8.1.

Recall the following elementary consequence of Banach’s �xed point theorem.

Lemma 8.4 ([DK90, Lemma 7.2.23]). Let X be a Banach space and let T : X → X be a smooth map
with T (0) = 0. Suppose there is a constant c > 0 such that

‖Tx −Ty‖ 6 c(‖x ‖ + ‖y‖)‖x − y‖.

Then if y ∈ X satis�es ‖y‖ 6 1

10c , there exists a unique x ∈ X with ‖x ‖ 6 1

5c solving

x +Tx = y.

Moreover, this x ∈ X satis�es ‖x ‖ 6 2‖y‖.

Proof of Proposition 8.1 assuming Proposition 8.3. By Proposition 8.3 the operator Lt : C
1,α
−1,t →

C0,α
−2,t is injective and has closed range. Therefore its cokernel is isomorphic to the kernel of

the dual operator L∗t . By elliptic regularity any element in the kernel of L∗t is smooth and thus,

since Lt is formally self-adjoint, an element in the kernel of Lt , which is trivial. This shows that

Lt is invertible. Denote its inverse by Rt : C
0,α
−2,t → C1,α

−1,t .

If we set at B Rtbt , then (8.2) becomes

(8.5) bt +Qt (Rtbt ) = − ∗t
(
FÃt ∧ψt

)
.

It follows from Proposition 8.3 and (6.5) thatQt (Rtb
1
) −Qt (Rtb

2
)

C0,α
−2,t
6 c

(
‖b

1
‖C0,α
−2,t
+ ‖b

2
‖C0,α
−2,t

)
‖b

1
− b

2
‖C0,α
−2,t

with a constant c > 0 independent of t ∈ (0,T ). Since by Proposition 6.7FÃt ∧ψt C0,α
−2,t
6 ct1/2,

Lemma 8.4 provides us with, for each t ∈ (0,T ′), a solution bt of (8.5) satisfying ‖bt ‖C0,α
−2,t
6 ct1/2

provided T ′ ∈ (0,T ] was chosen su�ciently small. Then

at = (ξt ,at ) = Rtbt ∈ C
1,α
−1,t

is the desired solution of (8.2) and satis�es ‖at ‖C1,α
−1,t
6 ct1/2.

It follows from elliptic regularity that at and thus At B Ãt + at is smooth. To see that At is

acyclic, that is, LAt is injective, note that ‖RtLAt − id‖C1,α
−1,t
6 ct1/2 and thus LAt is invertible for

t ∈ (0,T ′) provided T ′ ∈ (0,T ] was chosen su�ciently small. �

Before embarking on the proof of Proposition 8.3, it will be helpful to make a few observations.

On Yt\T̃t the operators Lt and Lθ agree. For �xed ε > 0, the norms ‖ · ‖Ck,α
β ,t (r

−1
t [ε,∞)) are uniformly

equivalent to the corresponding unweighted Hölder norms. Moreover, the restriction of Lt to

r−1t [ε,∞) becomes arbitrarily close to Lθ restricted to {x ∈ Y0 : d(x , S) > ε} as t goes to zero. These

observations and standard Schauder estimates combined with Proposition 7.7 and Proposition 7.11

yield the following Schauder estimate.
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Proposition 8.6. Given β ∈ R there is a constant c > 0 such that for all t ∈ (0,T ) we have

‖a‖C1,α
β ,t
6 c

(
‖Lta‖C0,α

β−1,t
+ ‖a‖L∞β ,t

)
.

This reduces the proof of Proposition 8.3 to the following statement.

Proposition 8.7. Given β ∈ (−3, 0) there are constants T ′ ∈ (0,T ) and c > 0 such that for all
t ∈ (0,T ′) the following holds:

‖a‖L∞β ,t 6 c ‖Lta‖C0,α
β−1,t
.

Proof. Suppose not. Then there exists a sequence (ai ) and a null-sequence (ti ) such that

‖ai ‖L∞β ,ti
= 1 and ‖Ltiai ‖C0,α

β−1,ti
6

1

i
.

Hence, by Proposition 8.6, we have

(8.8) ‖ai ‖C1,α
β ,ti
6 2c .

Pick xi ∈ Yti such that

wti (xi )
−β |ai (xi )| = 1.

After passing to a subsequence we can assume that one of the following three cases occurs. We

will rule out all of them, thus proving the proposition.

Case 1. The sequence (xi ) accumulates on the regular part of Y0: lim rti (xi ) > 0.

Let K be a compact subset of Y0\S . We can view K as a subset of Yt . As t goes to zero, the

metric on K induced from the metric on Yt converges to the metric on Y0, similarly we can identify

E0 |K with Et |K and via this identi�cation Ãt converges to θ on K . By (8.8) the sequence (ai |K ) is

uniformly bounded in C1,α
. We can thus extract a convergent subsequence using Arzelà–Ascoli.

Using a diagonal sequence argument over a sequence of compact sets (Ki ) exhausting Y0\S we can

pass to a further subsequence which converges inC1,α/2
loc

to a limit a ∈ Ω0(Y0\S, gE0)⊕Ω
1(Y0\S, gE0).

This limit satis�es

(8.9) |a | < c · d( · , S)β

as well as

Lθa = 0.

Since β > −3, it follows from (8.9) that a satis�es Lθa = 0 in the sense of distributions on all of Y0
and, therefore, is smooth by elliptic regularity. Because θ is assumed to be acyclic, a must be zero.

However, by passing to a further subsequence we can arrange that (xi ) converges to some point

x ∈ Y0\S . At this point we have |a |(x) = d(x , S)β , 0. This is a contradiction.

Case 2. The sequence (xi ) accumulates on one of the ALE spaces: lim rti (xi )/ti < ∞.
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There is no loss in assuming that each xi lies in T̃j,ti for some �xed j. With sβ,ti as in (7.6)

we de�ne ãi B sβ,tiai and denote by x̃i a lift of xi to R3 × π−1j,t (B
4

ζ /G j ). This rescaled sequence

satis�es, in the notation of Section 7,ãiC1,α
β
6 4c and (1 + |πj (x̃i )|)

−β |ã(x̃i )| >
1

2

as well as

(8.10) ‖LAj ãi ‖C0,α
β−1
6 2/i .

Arguing as in the previous case, we can extract a subsequence of (ãi ) which converges to a limit

ã ∈ C1,α/2
β in C1,α/2

loc
on R3 × X j . It follows from (8.10) that ã satis�es

LAj ã = 0.

By Proposition 7.8, ã must be zero since β ∈ (−3, 0) and Aj is in�nitesimally rigid. However,

by translation we can arrange that the R3
–component of x̃i is zero and thus we can view x̃i as

a point in X j . Then the condition limdti (xi )/ti < ∞ translates to lim |πj (x̃i )| < ∞. Therefore,

we can assume without loss of generality that x̃i converges to some point x̃ ∈ X j . But then

|ã(x̃)| > 1

2
(1 + |πj (x̃)|)

β > 0, which contradicts ã = 0.

Case 3. The sequence (xi ) accumulates on one of the necks: lim rti (xi ) = 0 and lim rti (xi )/ti = ∞.

As in the previous case, we rescale to obtain (ãi ) and (x̃i ), and we arrange it so that the

R3
–component of x̃i is zero. Since limdti (xi )/ti = ∞, we have lim |πj (x̃i )| = ∞. Fix a sequence

(Ri ) tending to in�nity such that εi B Ri/|πj (x̃i )| goes to zero. Using πj : X → C2/G, we can

think of the sets R3 × (C2\B4

Ri
)/G j as subsets of R3 × X j . Restricting to these sets and rescaling

everything by 1/|πj (x̃i )| we obtain, without changing notation, ãi ∈ Ω0
(
R3 × (C2\B4

εi )/G j
)
⊕

Ω1
(
R3 × (C2\B4

εi )/G j
)

and x̃i ∈ C2\B4

εi satisfying

‖ãi ‖C1,α
β
6 8c and |x̃ j |

−β |ãi (x̃i )| >
1

4

as well as

‖Lãi ‖C0,α
β−1
6 4/i .

Here the norms ‖ · ‖Ck,α
β

are de�ned like those in Section 7 except with the weight function now

de�ned by w(x ,y) B |y | for (x ,y) ∈ R3 × C2/G j . The operator L is de�ned by

L(ξ ,a) B (d∗a, dξ + ∗(ψ0 ∧ da))

withψ0 B
1

2
ω1 ∧ω1 + δ

2 ∧ δ 3 ∧ω1 + δ
3 ∧ δ 1 ∧ω2 − δ

1 ∧ δ 2 ∧ω3 and ωi ∈ Ω
2(C2) as in Section 4.

As before, we can extract a subsequence converging in C1,α/2
loc

to a limit

ã ∈ Ω0(R3 ×
(
C2\{0}

)
/G j ) ⊕ Ω1(R3 ×

(
C2\{0}

)
/G j )
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satisfying

(8.11) |ã | < cwβ

as well as

Lã = 0.

Since β > −3, it follows from (8.11) that ã satis�es Lã = 0 in the sense of distributions on all of

R3 × C2/G j and therefore ã is smooth by elliptic regularity. It also follows from (8.11) that both

ã and ∇ã are uniformly bounded: This is clear outside a tubular neighbourhood of R3 × {0}. If

B1 is a ball of radius one centred at some point in R3 × {0}, then (8.11) gives a uniform bound on

‖ã‖Lp (B1), for some �xed p ∈ (1,∞). Using elliptic estimates this yields a uniformW k,p
estimate

on the ball of radius one-half; hence, using Sobolev embedding, uniform bounds on ã and ∇ã.

Because L∗L = ∆R3 + ∆C2 , if follows from Lemma 7.10 that ã is invariant under translations in

the R3
–direction. Thus we can think of the components of ã as harmonic functions on C2

. Since

β < 0, they decay to zero at in�nity and thus vanish identically. However, we know that |x̃i | = 1

and thus a subsequence of (x̃i ) converges to a point x̃ ∈ C2/G j with |x̃ | = 1 at which |ã |(x̃) > 1

4
,

contradicting ã = 0. �

9 Examples with G = SO(3)

We will now explain how to use Theorem 1.1 to construct a few concrete examples ofG2–instantons

on the G2–manifolds from [Joy00, Sections 12.3 and 12.4]. The �at G2–structure ϕ0 on T 7
given by

(2.1) is preserved by α , β,γ ∈ Di�(T 7) de�ned by

α(x1, . . . ,x7) B
(
x1,x2,x3,−x4,−x5,−x6,−x7

)
,

β(x1, . . . ,x7) B
(
x1,−x2,−x3,x4,x5,

1

2
− x6,−x7

)
,

γ (x1, . . . ,x7) B
(
− x1,x2,−x3,x4,−x5,x6,

1

2
− x7

)
.

It is easy to see that Γ B 〈α , β,γ 〉 � Z3

2
.

To understand the singular set S of T 7/Γ note that the only elements of Γ having �xed points

are α , β and γ . The �xed point set of each of these elements consists of 16 copies of T 3
. The group

〈β ,γ 〉 acts freely on the set ofT 3
�xed by α and 〈α ,γ 〉 acts freely on the set ofT 3

�xed by β , while

αβ ∈ 〈α , β〉 acts trivially on the set of T 3
�xed by γ . It follows that S consists of 8 copies of T 3

coming from the �xed points of α and β and 8 copies of T 3/Z2. Near the copies of T 3
the singular

set is modelled on T 3 × C2/Z2 while near the copies of T 3/Z2 it is modelled on (T 3 × C2/Z2)/Z2

where the action of Z2 on T 3 × C2/Z2 is given by

(x1,x2,x3,±(z1, z2)) 7→
(
x1,x2,x3 +

1

2
,±(z1,−z2)

)
.

The 8 copies of T 3
can be desingularised by any choice of 8 ALE spaces asymptotic to C2/Z2. To

desingularise the copies of T 3/Z2 we need to chose ALE spaces which admit an isometric action
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of Z2 asymptotic to the action Z2 on C2/Z2 given by ±(z1, z2) 7→ ±(z1,−z2). Two possible choices

are the resolution of C2/Z2 or a smoothing of C2/Z2. See Joyce [Joy00, pages 313–314] for details.

We construct our examples on desingularisations of quotients of T 7/Γ. To this end we de�ne

σ1,σ2,σ3 ∈ Di�(T
7) by

σ1(x1, . . . ,x7) B
(
x1,x2,

1

2
+ x3,

1

2
+ x4,

1

2
+ x5,x6,x7

)
,

σ2(x1, . . . ,x7) B
(
x1,

1

2
+ x2,x3,

1

2
+ x4,x5,x6,x7

)
,

σ3(x1, . . . ,x7) B
(
1

2
+ x1,x2,x3,x4,

1

2
+ x5,

1

2
+ x6,x7

)
.

The elements σj commute with all elements of Γ and thus act on T 7/Γ. Moreover, this action is

free.

Example 9.1. Let A B 〈σ2,σ3〉. By analysing how A acts on the singular set of T 7/Γ one can see

that the singular set of Y0 B T 7/(Γ ×A) consists of one copy of T 3
, denoted by S1, and 6 copies of

T 3/Z2, denoted by S2, . . . , S7. S1 has a neighbourhood modelled on T 3 × C2/Z2, while S2, . . . , S6
have neighbourhoods modelled on (T 3 × C2/Z2)/Z2 where Z2 acts by ±(z1, z2) 7→ ±(z1,−z2) on

C2/Z2. As before, S1 can be desingularised by any choice of an ALE space asymptotic to C2/Z2.

S2, . . . , S6 can be desingularised by the resolution of C2/Z2 or a smoothing of C2/Z2.

To compute the orbifold fundamental group π1(Y0), note that it is isomorphic to the fundamental

group π1(Y0\S) of the regular part of Y0. Denote by p : R7 → Y0 the canonical projection. Then

p : p−1(Y0\S) → Y0\S is a universal cover. Up to conjugation we can therefore identify π1(Y0) with

the group of deck transformations

π1(Y0) = 〈α , β,γ ,σ2,σ3,τ1, . . . ,τ7〉 ⊂ A�(7) = GL(7) n R7.

Here we think of α , β,γ ,σ2,σ3 as elements of A�(7) de�ned by the formulae above and τi translates

the ith coordinate of R7
by one. The group π1(Y0) is a non-split extension

0→ Z7 → π1(Y0) → Γ ×A→ 0.

To work out the orbifold fundamental group π1(Tj ) of Tj , again up to conjugation, one simply has

to understand the subgroup of deck transformations preserving a �xed component of p−1(Tj ) ⊂
p−1(Y0\S). In this way one can compute

π1(T1) = 〈α ,τ1,τ2,τ3〉 ,

π1(T2) = 〈β,σ3α ,τ1,τ4,τ5〉 , π1(T3) = 〈τ3β ,σ3α ,τ1,τ4,τ5〉 ,

π1(T4) = 〈γ ,αβ ,σ2,τ4,τ6〉 , π1(T5) = 〈τ3γ ,τ3αβ ,σ2,τ4,τ6〉 ,

π1(T6) = 〈τ5γ ,τ5αβ ,σ2,τ4,τ6〉 , π1(T7) = 〈τ3τ5γ ,τ3τ5αβ,σ2,τ4,τ6〉 .

Here τ2 does not appear explicitly in π1(Tj ), for j = 4, . . . , 7, because σ 2

2
= τ2τ4.

Denote byV B
〈
a,b, c | a2 = b2 = c2 = 1,ab = c

〉
� Z2

2
the Klein four-group. V can be thought

of as a subgroup of SO(3): a = diag(1,−1,−1), b = diag(−1, 1,−1) and c = diag(−1,−1, 1). We
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de�ne ρ : π1(Y0) → V ⊂ SO(3) by

β,γ ,τ1, . . . ,τ7 7→ 1, α 7→ a,

σ2 7→ a, σ3 7→ b .

To see that the �at connection θ induced by ρ is acyclic we use the following observation.

Proposition 9.2. A �at connection θ on a G–bundle E0 over a �at G2–orbifold Y0 corresponding to
a representation ρ : π1(Y0) → G is acyclic if and only if the induced representation of π1(Y0) on
g ⊕ (R7 ⊗ g) has no non-zero �xed vectors.

Proof. Since Y0 is �at as a Riemannian orbifold and θ is a �at connection

L∗θLθ = ∇
∗
θ∇θ .

Therefore, all elements in the kernel of Lθ are actually parallel sections of the bundle gE0 ⊕ (T
∗Y0 ⊗

gE0) and these are in one-to-one correspondence with �xed vectors of the representation of π1(Y0)
on g ⊕ (R7 ⊗ g). �

The elements σ2 and σ3 act trivially on R7
and their action on so(3) has no common non-zero

�xed vectors. Therefore the action of π1(Y0) on g ⊕ (R7 ⊗ g) has no non-zero �xed vector and thus

θ is acyclic.

The monodromy representation µ j |G j : G j = Z2 → SO(3) associated with the �at connection θ
is non-trivial only for j = 1. Let A1 B A0,1 be the in�nitesimally rigid ASD instanton on E1 B E0,1
given in Proposition 5.22. For j = 2, . . . , 6 we choose Aj to be the product connection on the

trivial SO(3)–bundle Ej . We take ρ̃1 to be trivial. For j = 2, . . . , 6 we can choose ρ̃ j accordingly to

satisfy the compatibility conditions. Thus we obtain examples of G2–instantons on each of the

desingularisations of Y0 by appealing to Theorem 1.1.

Note that any choice of resolution data forT 7/(Γ×A) lifts to anA–invariant choice of resolution

data for T 7/Γ. We can then carry out Joyce’s generalised Kummer construction in a A–invariant

way and lift up the G2–instanton constructed above. However, we could not have constructed this

G2–instanton directly using Theorem 1.1, since the lift of θ to T 7/Γ is not acyclic.

Example 9.3. Here is a more complicated example. Let Y0 B T 7/(Γ × A) be as before. De�ne

ρ : π1(Y0) → V ⊂ SO(3) by

γ ,τ1, . . . ,τ7 7→ 1, α 7→ a, β 7→ b,

σ2 7→ b, σ3 7→ a.

Again, the resulting �at connection θ is acyclic. For j = 1, 2, 3 let Aj B A0,1 be the rigid ASD

instanton on Ej B E0,1. By adapting the framings of E2 and E3, we can arrange that A2 and A3 are

asymptotic at in�nity to the �at connection with monodromy given by b ∈ V . For j = 4, . . . , 7

let Aj be the product connection on the trivial bundle Ej . To be able to extend this to compatible
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gluing data we need a lift ρ̃ j of the action of Z2 on X j to Ej preserving Aj and acting trivially on

the framing at in�nity for j = 2, 3. If X j is a smoothing of C2/Z2, then the Z2 action on X j does lift

to Ej preserving Aj . However, the action does not lift if X j is the resolution of C2/Z2. The reason

for this is that in the �rst case the action of Z2 on H 2(X ,R) is given by the identity, while in the

second case it acts via multiplication by −1; see Joyce [Joy00, pages 313–314]. Thus we can only

�nd compatible gluing data if we resolve both S2 and S3 using a smoothing of C2/Z2.

Here is a small modi�cation of this example. De�ne ρ : π1(Y0) → V ⊂ SO(3) by

γ ,τ1, . . . ,τ7 7→ 1, α 7→ a, β 7→ b,

σ2 7→ b, σ3 7→ c .

To �nd compatible gluing data, one simply has to compose ρ̃ j as above with multiplication by

b ∈ G(Ej ), for j = 2, 3.

Example 9.4. Let B B 〈σ1,σ2,σ3〉 and Y0 B T 7/(Γ × B). Then the singular set of Y0 consists

of 4 copies of T 3/Z2, denoted by S1, . . . , S4, each of which has a neighbourhood modelled on

(T 3 × C2/Z2)/Z2 where Z2 acts on C2/Z2 by ±(z1, z2) 7→ ±(z1,−z2). The orbifold fundamental

group π1(Y0) is given by

π1(Y0) = 〈α , β,γ ,σ1,σ2,σ3,τ1, . . . ,τ7〉 ⊂ A�(7).

Up to conjugation the fundamental groups of the neighbourhoods Tj of S j are given by

π1(T1) =
〈
α ,τ−1

4
τ−1
5
βσ1σ2σ3,τ1,τ2,τ3

〉
, π1(T2) = 〈β,σ3α ,τ1,τ4,τ5〉 ,

π1(T3) = 〈γ ,αβ ,σ2,τ4,τ6〉 , π1(T4) = 〈τ3γ ,τ3αβ ,σ2,τ4,τ6〉 .

De�ne ρ : π1(Y0) → V ⊂ SO(3) by

α , β,σ3,τ1, . . . ,τ7 7→ 1, γ 7→ b

σ1 7→ a, σ2 7→ b .

The induced �at connection θ is clearly acyclic. As before, for j = 3, 4, we require S j to be

desingularised using a resolution of C2/Z2 in order to be able to �nd a lift ρ̃ j . Also note that, for

j = 3, 4, now we have make to a non-trivial choice for ρ̃ j , but this causes no problem since b ∈ V
lies in G(Ej ) and preserves Aj .

Again, the resulting G2–instanton can be lifted to appropriate σ1–invariant desingularisations

of T 7/(Γ ×A); however we could not have constructed the lifted G2–instanton directly, since the

lift of θ to T 7/(Γ ×A) it is not acyclic.

This list of examples is not exhaustive. The reader will have no di�culty �nding more examples

by modifying the ones given above.
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10 Proof of Theorem 1.6

The key to proving Theorem 1.6 is the following observation.

Proposition 10.1. Let X denote an ALE space asymptotic to C2/Z2, let E be a SO(3)–bundle with
non-trivialw2(E) and let D ⊂ X be a discrete subset. Then every connection A on E |X \D satis�es

YM(A) =

ˆ
X \D
|FA |

2 > 4π 2.

Equality is achieved if and only if A is gauge equivalent to the rigid ASD instanton A0,1 from
Proposition 5.22.

The proof requires some knowledge of Sedlacek’s work on weak compactness in 4–dimensional

gauge theory [Sed82]. For the reader’s bene�t I will brie�y recall his main results.

Theorem 10.2 (Sedlacek [Sed82, Theorem 3.1]). Let M be a Riemannian 4–manifold and let E be
a G–bundle over M where G is a compact Lie group together with a �xed embedding G ⊂ U (n) ⊂
Cn×n . Suppose that (Ai ) is a sequence of connections on E whose energy is uniformly bounded, i.e.,
YM(Ai ) = ‖FAi ‖L2 6 c for some �xed �nite constant c . Then, after passing to a subsequence, there
exists a �nite subset D ⊂ M and a cover {Uα } ofM\D consisting of small geodesic balls over which E
is trivialised, such that on each Uα the sequence (Ai |Uα ) converges up to gauge transformations to a
connection Aα ∈W

1,2(Uα ,T
∗Uα ⊗ gE ) weakly inW 1,2 and on Uα β B Uα ∩Uβ the connections Aα

and Aβ are related by a transition function дα β ∈W 2,2(Uα β ,G).

Sedlacek derived this result in a rather straight-forward manner from the work of Uhlen-

beck [Uhl82a]. A proof of the same result using a di�erent method can be found in Kessel’s PhD

thesis [Kes08, Chapter 3].

De�nition 10.3. In the situation of Theorem 10.2 we say that the sequence (Ai ) converges weakly
to theW 1,2 connection A = (Aα ) on theW 2,2 G–bundle E = (дα β ).

In the case G = SO(3) the main result of [Sed82] can stated as follows.

Theorem 10.4 (Sedlacek). Let M be a Riemannian 4–manifold. Then for each w ∈ H 2(M,Z2) the
in�mum

inf{YM(A) : A is a connection on a SO(3)–bundle E withw2(E) = w}

is attained. Denote this in�mum bym(w).

Proof Sketch. Let (Ai ) be a sequence of connections on SO(3)–bundles Ei with w2(Ei ) = w with

a limiting W 1,2
connection Ã = (Ãα ) a on a W 2,2

SO(3)–bundle Ẽ = (д̃α β ). Then each Ãα is

weakly Yang–Mills [Sed82, Theorem 4.1]; hence, each Ãα and thus also each д̃α β is smooth [Sed82,

Proposition 4.2]. By Uhlenbeck’s removable singularities theorem [Uhl82b, Theorem 4.1] Ã extends

to a smooth connection A on a smooth bundle E over M . By lower semi-continuity of the Yang–

Mills functional under weak convergence, YM(A) 6 m(w). According to [Sed82, Theorem 5.5]

the second Stiefel–Whitney class is preserved in this limit procedure, i.e., w2(E) = w and thus

YM(A) =m(w). �
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Proof of Proposition 10.1. We already know that the asserted minimum is achieved for A = A0,1.

Now, let A be any connection on a SO(3)–bundle E with non-trivial w2(E). By Theorem 10.4 we

may assume that the energy of A realises the in�mumm(w) where w ∈ H 2(X ,Z2) is the unique

non-trivial element. By Proposition 5.5 it follows that in some framing A is asymptotic to a �at

connection θ over (C2\{0})/Γ. By Theorem 5.16 the L2 index of δA is given by

indexδA = −2

ˆ
X
p1(A) +

χso(3)(−1) − 3

4

Here χso(3) is the character of the representation of Z2 on so(3) associated with θ . Depending on

whether θ is trivial or not the second summand, which we denote by ε in the following, is either 0

or −1. Since δA is quaternionic linear, the index of δA is divisible by four. We can write the energy

of A as

YM(A) = 2

ˆ
X
|F±A |

2 ∓ 8π 2

ˆ
X
p1(A)

= 2

ˆ
X
|F±A |

2 ± 4π 2(indexδA − ε).

If indexδA > 0, then indexδA > 4 and thus YM(A) > 16π 2
. If indexδA < 0, then indexδA 6 −4 and

thus YM(A) > 12π 2
. In both cases A cannot be a minimiser for the energy; therefore, indexδA = 0.

If ε = 0, then

´
X p1(A) = 0 and θ is trivial; however, this is impossible: The whole situation is

conformally invariant and we may thus think of X as having a cylindrical end. Now, we can double

X to obtain a compact manifold W and construct a SO(3)–bundle F over this manifold which

coincides with E over one half of W and is trivial over the second half of W . This bundle will

have p1(F ) = 0 and w2(F )
2 = 2 mod 4 which contradicts the identity p1(F ) = w2(F )

2
mod 4, see

[DK90, Equation (2.1.36)]. We therefore have ε = −1 which implies that YM(A) > 4π 2
. Moreover,

it follows that θ has precisely one non-trivial parallel section, A is anti-self-dual and, hence,

dim kerδA = indexδA = 0 and δA is invertible, say, fromW 1,2
to L2. The fact that δA is invertible

can be used to extend the non-trivial parallel section of θ to a non-trivial parallel section of E.

Therefore E is of the form R ⊕ L and A comes from a U (1) ASD instanton on L; hence, it must be

gauge equivalent as a SO(3) ASD instanton to A0,1. �

The above combined with a contradiction argument based on Sedlacek’s work yields the

following.

Proposition 10.5. In the situation of Proposition 10.1 suppose that (Ui ) is an exhaustion of X by
increasing compact sets. Then for each ε > 0, there is an i0 > 0 such that for i > i0 the following
holds: If A is a smooth connection on E |Ui , then

YM(A) =

ˆ
Ui
|FA |

2 > 4π 2 − ε .
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Now, as in the hypothesis of Theorem 1.6, let Y0 be an admissible G2–orbifold all of whose

singularities S j are modelled on (T 3×C2/Z2)/Hj and letY be compact 7–manifold and (ϕt )t ∈(0,T ) be

a family of torsion-free G2-structures on Y obtained via Joyce’s generalised Kummer construction

from resolution data for Y0. Suppose that E is a SO(3)–bundle over Y with the property that

(10.6) p1(E) = −
∑
j

εj

2

PD[S j ]

where εj = 1 if H2(X j )
Hj ⊂ H2(Y ) is non-trivial and w2(E) pairs non-trivially with H2(X j )

Hj

and εj = 0 otherwise. Suppose that (At )t ∈(0,T ) is a family of connections on E such that At is a

G2–instanton over (Y ,ϕt ).
By (3.6), (10.6) and Theorem 4.16 we have

YM(At ) = 4π 2

∑
j

εjvol(S j ) +O
(
t1/2

)
.

Moreover, it follows from Proposition 10.5 that

YM

(
At |r−1t [0,δζ ]

)
> 4π 2

∑
j

εjvol(S j ) − o(1)

with rt as in (4.13) and δ ∈ (0, 1/4] �xed, that is, the energy of At is mostly concentrated inside the

resolution locus. Consequently, the energy outside the resolution locus goes to zero

(10.7) YM

(
At |r−1t (δζ ,∞)

)
= o(1).

Theorem 10.8 (Nakajima [Nak88, Lemma 3.1]). Let M be a Riemannian n–manifold and let E be
a G–bundle overM . Then there are constants c, r0, ε0 > 0, such that the following holds. Let A be a
Yang–Mills connection on E. If x ∈ M and 0 < r 6 r0 are such that

(10.9) ε B r 4−n
ˆ
Br (x )
|FA |

2
vol 6 ε0,

then
sup

y∈B r
4

(x )
|FA |

2(y) 6 cεr−4.

Remark 10.10. This result is one of the cornerstones of compactness theory for the Yang–Mills

equation in higher dimensions. Its proof heavily relies on Price’s monotonicity formula [Pri83]

which says that the quantity ε = ε(r ) de�ned in (10.9) is (essentially) monotonically increasing in r .

It follows from (10.7) and Theorem 10.8 that on every �xed closed ball in Y0\S the L∞–norm

of FAt will be arbitrarily small provided t > 0 is su�ciently small; hence, we can put At into

Uhlenbeck gauge [Uhl82a, Theorem 1.3]. In this gauge the G2–instanton equation becomes elliptic
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and, using standard elliptic theory, one can show that on every closed ball in Y0\S there exist

gauge transformations (д̃t ) such that (д̃∗tAt ) converges to a �at connection on this ball. As in

[DK90, Section 4.4.2] these local gauge transformations can be patched to yield global gauge

transformations (дt ) such that (д∗tAt ) converges to a �at connection θ in C∞
loc
(Y0\S).

From Proposition 6.2 it follows that θ extends to an orbifold �at connection on Y0. This

completes the proof of Theorem 1.6. �

A An in�nite-dimensional Liouville-type theorem

The following result is an abstraction of various results that have appeared in the literature, for ex-

ample, in Pacard–Ritoré’s work on the Allen–Cahn equation [PR03, Corollary 7.5] and in Brendle’s

unpublished work on the Yang–Mills equation in higher dimension [Bre03, Proposition 3.3].

Lemma A.1. Let E be a vector bundle of bounded geometry over a Riemannian manifoldX of bounded
geometry and with subexponential volume growth, and suppose that D : C∞(X ,E) → C∞(X ,E) is a
uniformly elliptic operator of second order whose coe�cients and their �rst derivatives are uniformly
bounded, that is non-negative, such that 〈Da,a〉 > 0 for all a ∈W 2,2(X ,E), and formally self-adjoint.
If a ∈ C∞(Rn × X ,E) satis�es

(∆Rn + D)a = 0

and ‖a‖L∞ is �nite, then a is constant in the Rn–direction, that is a(x ,y) = a(y). Here, by slight abuse
of notation, we denote the pullback of E to Rn × X by E as well.

Here is a heuristic argument. Denote by â the partial Fourier transform of a in the Rn–direction.

Then â solves (D+ |k |2)â = 0. But D+ |k |2 is invertible for k , 0. Thus â is supported on {0}×X and

hence must be a linear combination of derivatives of various orders of Γ(E)–valued δ–functions.

Reversing the Fourier transform shows that a must be a polynomial in Rn . But then it follows

from the assumptions that a is constant in the Rn–direction. The actual proof will be slightly more

pedestrian.

First we need to set-up some notation. We �x a point p ∈ X and denote by ρ : X → [0,∞)
a smoothing of the distance from p, as in Kordyukov [Kor91, Proposition 4.1]. For δ ∈ R we

introduce a weight function wδ B e−δ ρ and weighted Hilbert spaces W s,2
δ (X ,E) consisting of

locally integrable sections f such that wδ · f lies in W s,2(X ,E) with inner product de�ned by

〈 · , · 〉W s,2
δ

B 〈wδ ·,wδ ·〉W s,2 . As usual we set L2δ (X ,E) BW 0,2
δ (X ,E).

Proposition A.2. For each k0 > 0 there is a constant ε = ε(k0) > 0 such that for all δ ∈ (−ε, ε) and
k ∈ [k0,∞) the operator D + k2 : W

2,2
δ (X ,E) → L2δ (X ,E) is an isomorphism. Moreover, for ` > 0

there is a constant c` = c`(k0) > 0 such that

(A.3)

∂`k (
D + k2

)−1
a

W 2,2
δ
6 c`(1 + k)

` ‖a‖L2δ

for all k ∈ [k0,∞) and a ∈ L2δ (X ,E).
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Proof. By standard elliptic theory we have

‖a‖W 2,2 6 c
(
‖Da‖L2 + ‖a‖L2

)
.

Since D is non-negative, we have

‖Da‖L2 6
(D + k2)aL2 and k2‖a‖L2 6

(D + k2)aL2 .
Putting everything together yields

‖a‖W 2,2 6 c(1 + 1/k2
0
)
(D + k2)aL2

for k ∈ [k0,∞). This implies that D + k2 : W 2,2 → L2 is an injective operator with closed range. It

is also surjective, since its co-kernel can be identi�ed with the L2 kernel of D + k2 which is trivial.

We now argue as in [Kor91, Proposition 4.4]. Via the Hilbert space isomorphismW s,2
δ �W s,2

de�ned by multiplication withwδ the operatorD+k2 : W 2,2
δ → L2δ is equivalent toDδ+k

2
: W 2,2 →

L2 where Dδ B wδDw
−1
δ . We can write Dδ as

Dδ = D + δPδ

with Pδ : W
2,2 → L2 bounded independent of δ . Therefore,( (D + k2) − (

Dδ + k
2
) ) (

D + k2
)−1

a

L2 6 |δ |c(1 + 1/k

2

0
)‖a‖L2 .

If we choose ε = ε(k0) > 0 su�ciently small, then for δ ∈ (−ε, ε) the factor on the right-hand sight

is less than
1

2
; thus, the series

(Dδ + k
2)−1 B

(
D + k2

)−1 ∑
i>0

[ ( (
D + k2

)
−

(
Dδ + k

2
) ) (

D + k2
)−1] i

converges and the operator norm of (Dδ + k
2)−1 is bounded by 2c(1 + 1/k2

0
). This establishes (A.3)

for ` = 0. For ` > 0, we have

∂`k
(
D + k2

)−1
=

∑̀
i=0

`+1∑
j=2

ci, j, ` · k
i [ (D + k2)−1] j

for universal constants ci, j, ` . Thus (A.3) for ` > 0 can be reduced to the case ` = 0. �

Lemma A.1 can now be proved using an argument similar to the one used by Brendle [Bre03,

Proposition 3.3]. This is essentially the proof of the ingredients from classical distribution theory

used in the heuristic proof adapted to our in�nite-dimensional setting.

Proof of Lemma A.1. We proceed in 3 steps.
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Step 1. Let χ ∈ S(Rn) be a fast decaying function whose Fourier transform χ̂ vanishes in Bk0(0) and
let b ∈ L2δ (X ,E) for some δ ∈ (−ε, ε) with ε = ε(k0). Then there exists a ∈ S(Rn ,W 2,2

δ (X ,E)) such
that (∆Rn + D)a = χb.

We construct a ∈ S(Rn ,W 2,2
δ (X ,E)) using Fourier synthesis. By assumption χ̂ (k) = 0 for

|k | 6 k0. For |k | > k0 set

âk B
(
D + |k |2

)−1
b .

and de�ne

a(x ,y) B

ˆ
Rn

ei 〈x,k 〉âk (y)χ̂ (k) dL
n(k).

Here Ln
denotes the n–dimensional Lebesgue measure on Rn . Then(

∆Rn + D
)
a(x ,y) = bχ .

Moreover, one can verify that x 7→ ‖a(x , · )‖W 2,2
δ

is in S(Rn) using a slight variation of the proof

that the Fourier transform maps fast decaying functions to fast decaying functions and the estimate

‖∂`k âk ‖W 2,2
δ
6 c`(1 + |k |)

` ‖b‖L2δ
.

Step 2. Let χ ∈ S(Rn) with χ̂ (0) = 0. Then there is a family (χε )ε>0 of fast decaying functions such
that χ̂ε vanishes on Bε (0) and limε→0 ‖χε − χ ‖L1 = 0.

Pick a smooth function ρ : R→ [0, 1] such that ρ(k) = 0 for |k | 6 1 and ρ(k) = 1 for |k | > 2.

Set χ̂ε (k) B ρ(|k |/ε)χ̂ (k) and denote its inverse Fourier transform by χε . Then χε clearly satis�es

the �rst part of the conclusion. To see that the second part also holds, note that from χ̂ (0) = 0 it

follows that ∇n(χ̂ε − χ̂ )L2n/(2n−1) = O (
ε1/2

)
and therefore

‖χε − χ ‖L1 6
(1 + |x |)−nL2n/(2n−1) · (1 + |x |)n(χε − χ )L2n
6 c

(
‖ χ̂ε − χ̂ ‖L2n/(2n−1) +

∇n(χ̂ε − χ̂ )L2n/(2n−1) ) = O (
ε1/2

)
,

where c > 0 is a constant depending only on n. Here we used that the inverse Fourier transform is

a bounded linear map from L2n/(2n−1) to L2n and the Fourier transform’s behaviour with respect to

derivatives.

Step 3. Suppose that (∆Rn + D)a = 0. Then for σ ∈ Sn(Rn), δ ∈ Rn and b ∈ C∞c (X ,E) we haveˆ
Rn
〈a(x , · ),b〉L∞,L1 (σ (x + δ ) − σ (x)) dL

n(x) = 0.

In particular, the conclusion of the lemma holds.
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Set χ (x) B σ (x + δ ) − σ (x). Then χ̂ (0) = 0. Let χε be as in Step 2. According to Step 1, for

each ε > 0 there is some small δ > 0 and cε ∈ S(Rn ,W 2,2
−δ (X ,E)) such that (∆Rn + D)cε = χεb. By

the assumptions on a and since X has subexponential volume growth we haveˆ
Rn
〈a(x , · ),b〉 χ (x) dLn(x)

= lim

ε→0

ˆ
Rn
〈a(x , · ),b〉 χε (x) dL

n(x)

= lim

ε→0

ˆ
Rn

ˆ
X
〈a(x ,y), (∆Rn + D)cε 〉 dL

n(x) dvol(y)

= lim

ε→0

ˆ
Rn

ˆ
X
〈(∆Rn + D)a(x ,y), cε 〉 dL

n(x) dvol(y)

= 0.

Since σ , δ and b are arbitrary, it follows that a is invariant in the Rn–direction. This �nishes the

proof. �

Remark A.4. It is clear from the proof that in Lemma 7.10 one can replace the assumptions that X
has subexponential volume growth and that ‖a‖L∞ is �nite by the assumption that ‖a(x , ·)‖L2δ

is

bounded independent of x ∈ Rn for all δ > 0.
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