Isolated singularities

Main results

Outline of proof

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 0

Isolated singularities, minimal discrepancy and exact fillings

Michael B. Rothgang (he/him)

Symplectic geometry group Humboldt-Universität zu Berlin

Working geometry group seminar February 22, 2021

Isolated singularities

Main results

Outline of proof

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion O

Outline

- Motivation: \mathbb{RP}^{2n-1} is not exactly fillable
- Background: varieties, isolated singularities and their links
- Main results: minimal discrepancy and highest minimal index
- Outline of proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Exact fillability of projective space

hierarchy of symplectic fillings: in order of strictness,

```
tight < weak < strong < exact < Stein = Weinstein.
```

Theorem (Zhou 2020) $(\mathbb{RP}^{2n-1}, \xi_{std})$ is not exactly fillable for $n \neq 2^k$. Consider the action of \mathbb{Z}_k on \mathbb{C}^n (multiply by $e^{2\pi i/k}$ in each component)

Theorem (Zhou 2020)

If k is prime and satisfies (an topological condition which implies n > k), the quotient $(\mathbb{S}^{2n-1}/\mathbb{Z}_k, \xi_{std})$ has no exact filling.

Exact fillability of projective space: about Zhou's proof

Theorem (Zhou 2020)

If k is prime and satisfies (an topological condition which implies n > k), the quotient $(\mathbb{S}^{2n-1}/\mathbb{Z}_k, \xi_{std})$ has no exact filling.

Proof outline.

- If W is an exact filling of (S²ⁿ⁻¹/Z_k, ξ_{std}) for n > k, ⊕_iH²ⁱ(W; ℝ) ≤ k and ⊕_iH²ⁱ⁺¹(W; ℝ) ≤ k − 2. Uses neck-stretching + spectral sequence for a clever filtration of SH.
- Using the top. assumption, deduce a contradiction

Symplectic part uses only $n \ge k + 1!$

Isolated singularities

Main results

Outline of proof

Conclusion 0

Putting Zhou's proof in context

- ▶ Cⁿ/Z_k is an (affine) algebraic variety, with an isolated singularity at 0
- $\mathbb{S}^{2n-1}/\mathbb{Z}_k$ is the *link* of the singularity at 0

Miracle

 $n \ge k + 1 \Leftrightarrow 0$ is a *terminal singularity* of $\mathbb{C}^n / \mathbb{Z}_k$.

Conjecture (Zhou 2020)

If $G \leq U(n)$ finite and \mathbb{C}^n/G has a terminal singularity at 0, its link has no (symp. aspherical or Calabi-Yau) filling.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Algebraic geometry concepts: algebraic varieties

- (complex) affine space is $A^n := \{(a_1, \ldots, a_n) : a_i \in \mathbb{C}\}$
- affine (algebraic) variety

$$X = V(f_1, \ldots, f_k) = \{a \in A^n : f_1(a) = \cdots = f_k(a) = 0\}$$

for $f_k \in \mathbb{C}[x_1, \ldots, x_n]$

- ▶ equivalently, consider R := k[t₁,..., t_n]/⟨f₁,..., f_k⟩ is a finitely generated C-algebra, coordinate-free definition
- ▶ X is **irreducible** iff there are no algebraic sets $Y, Z \subset X$ s.t. $X = Y \cup Z$.

Isolated singularities

Main results

Outline of proof

Conclusion 0

Algebraic geometry concepts: singularities

Let $X = V(\langle g_1, \ldots, g_r \rangle) \subset A^n$ be an algebraic variety.

- ▶ $a \in X$ is **regular** iff the Jacobian $\left(\frac{\partial g_i}{\partial x_j}(a)\right)$ has maximal rank, otherwise a singular point or **singularity**
- ▶ **tangent space** of $a \in X$ is $T_a X = \{v \in \mathbb{C}^n : J(a)v = 0\}$, where $J(a) = (\frac{\partial g_i}{\partial x_i}(a))_{ij}$ is the Jacobian of the g_i
- X has dimension dim X = n − rk(J(a)) = n − dim T_aX, where a ∈ X is any regular point.
- singular set Sing(X) = {a ∈ X : singular} ⊂ X is (Zariski) closed proper subset, hence an algebraic subvariety
- $\Rightarrow X \setminus Sing(X) \subset X$ is an open dense subset

Isolated singularities

Main results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion 0

Key concepts: link of a singularity

 $A \subset \mathbb{C}^N$ irreducible affine (algebraic) variety with dim_{$\mathbb{C}} A = n$ 0 \in A isolated singularity (perhaps smooth, i.e. a regular point)</sub>

- link of A is $L_A := A \cap \{\sum_{i=1}^N |z_i|^2 = \epsilon^2\}$ for small $\epsilon > 0$.
- Fact. L_A depends only on the germ of A near 0; in particular, L_A is independent of the choice of ε.
- **Fact.** L_A is a differentiable manifold of (real) dimension 2n 1.
- **• Observation.** Near 0, A is homeomorphic to a cone over L_A .
- Trivial Example. If A is smooth at 0, then L_A is diffeo to a sphere.
- **Fact.** $\xi_A := \xi_{std}|_{TL_A}$ is a contact structure on L_A .
- Observe that $\xi_A = TL_A \cap J_{std}(TL_A)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

A peek at different kinds of singularities

- (regular points)
- ► normal singularities → normalisation (then: codim Sing(X) ≥ 2)
- ▶ topologically smooth singularities: $L_A \cong_{\text{diff}} \mathbb{S}^{2n-1}$
- For an isolated singularity in dim_C(A) \geq 2,

num. \mathbb{Q} -Gorenstein $\supset \mathbb{Q}$ -Gorenstein \supset complete intersection sing.;

0 is numerically \mathbb{Q} -Gorenstein $\Leftrightarrow c_1(\xi_A) = c_1(TA|_{L_A})$ is torsion.

- ► canonical singularity: numerically *Q*-Gorenstein and md(*A*, 0) ≥ 0
- terminal singularity: numerically Q-Gorenstein and md(A, 0) > 0

Isolated singularities

Main results

Outline of proof

Conclusion 0

Capturing local behaviour: local rings

- ► type of singularity is "local behaviour" capture local behaviour near x ∈ X using the local ring at x
- R non-zero unital communitative ring
 - ▶ $I \subset R$ is an ideal of R iff $I \leq (R, +)$ and $ri = ir \in I$ for all $i \in I, r \in R$
 - ▶ a proper ideal $I \subset R$ is **prime** iff $ab \in I$ implies $a \in I$ or $b \in I$
 - ▶ a proper ideal $I \subset R$ is **maximal** iff \nexists ideal J s.t. $I \subsetneq J \subsetneq R$

maximal ideals are prime

▶ Fact. For $a = (a_1, ..., a_n) \in A^n$, each $\mathfrak{m}_a := \langle x_1 - a_1, ..., x_n - a_n \rangle \subset \mathbb{C}[x_1, ..., x_n]$ is a maximal ideal of $\mathbb{C}[x_1, ..., x_n]$, and every maximal ideal is of this form.

Capturing local behaviour: local rings

- ► type of singularity is "local behaviour" capture local behaviour near x ∈ X using the local ring at x
- R non-zero unital communitative ring
 - ▶ $I \subset R$ is an **ideal** of R iff $I \leq (R, +)$ and $ri = ir \in I$ for all $i \in I, r \in R$
 - ▶ a proper ideal $I \subset R$ is **prime** iff $ab \in I$ implies $a \in I$ or $b \in I$
 - ▶ a proper ideal $I \subset R$ is **maximal** iff \nexists ideal J s.t. $I \subsetneq J \subsetneq R$
 - maximal ideals are prime
- ▶ Fact. For $a = (a_1, ..., a_n) \in A^n$, each $\mathfrak{m}_a := \langle x_1 a_1, ..., x_n a_n \rangle \subset \mathbb{C}[x_1, ..., x_n]$ is a maximal ideal of $\mathbb{C}[x_1, ..., x_n]$, and every maximal ideal is of this form.
- ▶ given a prime ideal $\mathfrak{p} \subset R$, **localisation** at \mathfrak{p} is $R_{\mathfrak{p}} := \{r/s : r \in R, s \in R \setminus \mathfrak{p}\}/\sim$, equivalence by cancellation.
- Definition. The local ring of a variety X ⊂ Aⁿ at a ∈ X is the localisation k[X]_{m_a} of the coordinate algebra k[X] of X at the maximal ideal m_a corresponding to a.
- ▶ local ring $\mathcal{O}_p(X)$ encodes local properties of X at p

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Normal singularities

- Definition. Let φ : R → S be a ring homomorphism ("S is an R-algebra"). x ∈ S is integral over R iff f(x) = 0 for some monic polynomial f ∈ R[t]
- ► **Fact.** The set of integral elements of *S* is a subalgebra of *S*, called the **normalisation** of *S*.
- ▶ **Definition.** An integral domain *R* is **normal** iff it equals its normalisation in its quotient field.
- ▶ Definition. An affine variety X is normal at x ∈ X if the local ring at this point is normal. X is normal iff it is normal at every point.

Isolated singularities

Main results

Outline of proof

Conclusion 0

Normal singularities (cont.)

X irreducible affine variety

- ▶ **Definition.** *X* is **normal at** *x* ∈ *X* if the local ring at this point is normal. *X* is **normal** iff it is normal at every point.
- **Theorem.** X is normal at every regular point.
- ► Theorem. The singular locus Sing(X) = {a ∈ X : X singular at a} is a proper algebraic subset of X.
- **Proposition.** If X is normal, dim $Sing(X) \le \dim X 2$.

Isolated singularities

Main results

Outline of proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion O

Normal singularities: geometric intuition

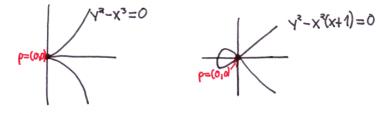


Figure: Pictures reproduced from Eisenbud: Commutative algebra (1995), p. 128.

- Consider $f = y^2 x^3$ resp. $f = y^2 x^2(x+1) \in \mathbb{C}[x,y]$
- compute: X = V(f) has one singular point, p = (0, 0)
- consider $y/x \in \mathcal{O}_p(X)$: bounded along X near p
- ▶ algebraically: y/x is integral, e.g. $(y/x)^2 x = 0$ (left)

Isolated singularities

Main results

Outline of proof

Conclusion 0

Normal singularities: geometric intuition

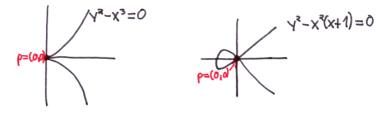


Figure: Pictures reproduced from Eisenbud: Commutative algebra (1995), p. 128.

- Consider $f = y^2 x^3$ resp. $f = y^2 x^2(x+1) \in \mathbb{C}[x,y]$
- compute: X = V(f) has one singular point, p = (0, 0)
- consider $y/x \in \mathcal{O}_p(X)$: bounded along X near p

▶ algebraically: y/x is integral, e.g. $(y/x)^2 - x = 0$ (left) **Theorem.** An element p(x)/q(x) of the quotient field is integral over $\mathbb{C}[X]$ iff each $x \in X$ has a neighbourhood U s.t. $|\frac{p(x)}{q(x)}|$ is bounded at all points of U where q is non-zero.

Normalisation and resolution of varieties

- normalise a variety X using its coordinate algebra $R := \mathbb{C}[X]$
- Recall. anti-equivalence of categories

 $\{ \text{affine algebraic varieties} \} \longleftrightarrow \{ \text{finitely generated } \mathbb{C}\text{-algebras} \},$ $\text{variety } X \longmapsto \text{coordinate algebra } \mathbb{C}[X]$

- normalisation \widetilde{R} of R corresponds to the **normalisation** \widetilde{X} of X
- natural inclusion $R \hookrightarrow \widetilde{R}$ into normalisation \widetilde{R}
- induces a birational map $\pi \colon \widetilde{X} \to X$
- A resolution of an algebraic variety X is a non-singular variety \widetilde{X} together with a proper birational map $\pi : \widetilde{X} \to X$.
- Theorem (Hironaka '64). Every variety has a resolution.

Isolated singularities

Main results

Outline of proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion O

Normalisation: geometric intuition

consider
$$X=V(f)$$
 for $f=y^2-x^3$ or $f=y^2-x^2(x+1)\in \mathbb{C}[x,y]$

Figure: Normalisation of the curves from the previous example. Pictures reproduced from Eisenbud: Commutative algebra (1995), p. 141.

algebraically: normalisation of $R = \mathbb{C}[X]$ is $\mathbb{C}[t]$ geometrically: normalisation $\widetilde{X} \cong \mathbb{C}$

Known results about singularities and their links

- Theorem (Mumford '61). In complex dimension two, every normal topologically smooth singularity is smooth.
- Many counterexamples in dimension ≥ 3 , such as $A := \{x^2 + y^2 + z^2 + w^2 = 0\} \subset \mathbb{C}^4$.
- ► Theorem (Ustilovski '99). For each m > 0, there are infinitely many singularities with links diffeomorphic to S^{4m+1}, but not contactomorphic.
- Theorem (Kwon-van Koert '16). For weighted homogeneous hypersurface singularities {∑ z_j^{k_j} = 0}, (L_A, ξ_A) determines whether ∑_j 1/k_j > 1 ⇔ 0 is a canonical singularity.

Isolated singularities

Main results

Outline of proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Conclusion 0

The highest minimal index

- $(C^{2n-1}, \xi = \ker \alpha)$ co-oriented contact manifold \rightarrow symplectic vector bundle $(d\alpha|_{\xi}, \xi)$
- First Chern class c₁(ξ) := c₁(ξ, J) ∈ H²(C; Z) for J compatible acs on dα|_ξ
- Suppose $Nc_1(\xi) = 0$ and $H^1(C; \mathbb{Q}) = 0$ \longrightarrow Conley-Zehnder index $CZ(\gamma) \in \frac{1}{N}\mathbb{Z}$ of a Reeb orbit γ
- Iower SFT index

$$\mathsf{ISFT}(\gamma) := \mathsf{CZ}(\gamma) + (n-3) - rac{1}{2} \dim \ker(D_{\gamma(0)} \phi_L|_{ imes i} - id)$$

- minimal SFT index $mi(\alpha) := inf_{\gamma} ISFT(\gamma)$
- highest minimal SFT index $hmi(C, \xi) := \sup_{\alpha} mi(\alpha)$.
- **Observation.** hmi(*C*, *ξ*) is a contact invariant.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main results: relating minimal discrepancy and hmi

Main Theorem (McLean '15)

- if $md(A, 0) \ge 0$ then $hmi(L_A, \xi_A) = 2 md(A, 0)$,
- if md(A, 0) < 0, then $hmi(L_A, \xi_A) < 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Main results: relating minimal discrepancy and hmi

Main Theorem (McLean '15)

- if $md(A, 0) \ge 0$ then $hmi(L_A, \xi_A) = 2 md(A, 0)$,
- if md(A, 0) < 0, then $hmi(L_A, \xi_A) < 0$.
- ► Recall. 0 is canonical if md(A, 0) ≥ 0, terminal if md(A, 0) > 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Main results: relating minimal discrepancy and hmi

Main Theorem (McLean '15)

- if $md(A, 0) \ge 0$ then $hmi(L_A, \xi_A) = 2 md(A, 0)$,
- if md(A, 0) < 0, then $hmi(L_A, \xi_A) < 0$.
- ► Recall. 0 is canonical if md(A, 0) ≥ 0, terminal if md(A, 0) > 0
- Conley-Zehnder indices on L_A determine whether 0 is canonical or terminal

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Main results: relating minimal discrepancy and hmi

Main Theorem (McLean '15)

- if $md(A, 0) \ge 0$ then $hmi(L_A, \xi_A) = 2 md(A, 0)$,
- if md(A, 0) < 0, then $hmi(L_A, \xi_A) < 0$.
- ► Recall. 0 is canonical if md(A, 0) ≥ 0, terminal if md(A, 0) > 0
- Conley-Zehnder indices on L_A determine whether 0 is canonical or terminal

Isolated singularities

Main results

Main results: relating minimal discrepancy and hmi

- **Definition.** If (M, ξ) is contactomorphic to some link (L_A, ξ_A) , it is **Milnor fillable**, and A is a **Milnor filling** of M.
- **Example.** ($\mathbb{S}^{2n-1}, \xi_{std}$) is Milnor fillable; its Milnor filling is \mathbb{C}^n .
- **Corollary.** If A is normal and (L_A, ξ) is contactomorphic to $(\mathbb{S}^5, \xi_{std})$, then A is smooth at 0.
- \Rightarrow (S⁵, $\xi_{\rm std}$) has a unique smooth Milnor filling up to normalization.

Extends Mumford's results to complex dimension three.

- Observation. Milnor fillable contact structures are strongly fillable.
- Conjecture (Shukorov '02). If A is normal and numerically \mathbb{Q} -Gorenstein with md(A, 0) = n 1, then A is smooth at 0.
- Corollary. If the conjecture holds, A is normal and (L_A, ξ_A) ≃ (S²ⁿ⁻¹, ξ_{std}) (any n), then A is smooth at 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Canonical bundles and $\mathbb Q\text{-}\mathsf{Cartier}$ divisors

- **Definition.** X non-singular algebraic variety with dim_C X = n. The **canonical bundle** of X is $\Omega = \Lambda^n T^* X$.
- X normal variety. A (Weil) Q-divisor is a finite formal linear combination D = ∑_{j=1}^k a_jE_j with a_j ∈ Q, E_j ⊂ X irreducible codimension 1 subvariety.
- ► A Q-divisor D is Q-Cartier if we can choose the E_j to be locally defined by one equation.
- **Fact.** If *X* is non-singular, every Q-divisor is Q-Cartier.
- Fact. Every line bundle on a normal variety X is the class of some Cartier divisor.

Isolated singularities

Main results

Conclusion 0

Numerically Q-Gorenstein singularities

A (irreducible) algebraic variety with an isolated singularity at 0

- A smooth normal crossings divisor is a Cartier divisor whose components only intersect transversely. Near each point, the divisor looks like the intersection of coordinate hyperplanes.
- Take a resolution $\pi: \widetilde{A} \to A$ of A s.t. $\pi^{-1}(0) = \bigcup_i E_i$ for smooth normal crossing divisors E_i , and π is an isomorphism away from these divisors.
- ▶ **Definition.** *A* is **numerically Q**-**Gorenstein** iff there exists a **Q**-Cartier divisor $K_{\widetilde{A}/A}^{\text{num}} := \sum_j E_j$ s.t. $C \cdot (K_{\widetilde{A}/A}^{\text{num}} - K_{\widetilde{A}}) = 0$ for any projective algebraic curve $C \subset \pi^{-1}(0)$.

Isolated singularities

Main results

Outline of proof

Defining the minimal discrepancy

- ▶ **Definition.** *A* is **numerically** Q**-Gorenstein** iff there exists a Q-Cartier divisor $K_{\widetilde{A}/A}^{\text{num}} := \sum_j E_j$ s.t. $C \cdot (K_{\widetilde{A}/A}^{\text{num}} - K_{\widetilde{A}}) = 0$ for any projective algebraic curve $C \subset \pi^{-1}(0)$.
- ▶ **Fact.** The $a_j \in \mathbb{Q}$ are unique; a_j is called the **discrepancy** of E_j .
- **Definition.** The **minimal discrepancy** md(A, 0) of A is the infimum of a_j over all resolutions π .
- **Proposition.** If π is a fixed resolution, not the identity, then

$$\mathsf{md}(A,0) = \begin{cases} \min_j a_j & \text{if } a_j \ge -1 \ \forall j \in \{1,\ldots,l\} \\ -\infty & \text{otherwise} \end{cases}$$

If A is smooth at 0, we have $md(A, 0) = \dim_{\mathbb{C}} A - 1$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Isolated singularities

Main results

Outline of proof

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 0

Strategy of McLean's proof

- easier part: $\operatorname{hmi}(L_A, \xi_A) \geq 2 \operatorname{md}(A, 0)$
- ▶ harder parts: If $md(A, 0) \ge 0$ then $hmi(L_A, \xi_A) \le 2 md(A, 0)$; if md(A, 0) < 0 then $hmi(L_A, \xi_A) < 0$.
- model case: A is the cone over a projective variety X; we skip explaining the proof in the general case

Isolated singularities

Main results

Outline of proof

Conclusion 0

Model case: cone singularity

- Model case: A ⊂ C^N is the cone of a smooth connected projective variety X ⊂ CP^{N-1}
- ▶ resolution \widetilde{A} by blowing up at the origin; $\mathcal{O}(-1) = (\widetilde{\pi} : \widetilde{A} \to X)$ is the tautological line bundle
- ▶ numerically \mathbb{Q} -Gorenstein $\Leftrightarrow c_1(K_{\widetilde{A}}|_{L_A}; \mathbb{Q}) = 0$
- $L_A o \widetilde{A} \setminus X$ is a homotopy equivalence: $c_1(\mathcal{K}_{\widetilde{A}}|_{\widetilde{A} \setminus X}; \mathbb{Q}) = 0$
- For some N > 0, K^{⊗N}_A has a smooth section s which is transverse outside a compact set
- discrepancy of A is the $a \in \mathbb{Q}$ satisfying

$$[s^{-1}(0)] = aN(X) \in H_{2n-2}(\widetilde{A};\mathbb{Q}) = H_{2n-2}(X;\mathbb{Q}),$$

minimal discrepancy md(A, 0) is a if $a \ge -1$, otherwise $-\infty$.

Main results

Conclusion 0

Model case: proof of easier statement

want to show: $\mathsf{hmi}(\mathcal{L}_{\mathcal{A}},\xi_{\mathcal{A}})\geq 2\,\mathsf{md}(\mathcal{A},0)$

- ▶ goal: find a contact form α_A for ξ_A s.t. $md(\alpha_A) = 2 md(A, 0)$
- *O*(−1) is a Hermitian line bundle, link *L_A* is the radius *ε* circle bundle on *O*(−1)
- $\pi = \tilde{\pi}|_{L_A}$ makes L_A a circle bundle over X
- consider the contact form $\alpha_A := -\frac{1}{4\pi\epsilon^2} d^c (\sum_j |z_j|^2)|_{L_A}$
- ▶ all Reeb orbits are of the form $\gamma : \mathbb{R}/k\mathbb{Z} \to L_A, \gamma(t) = B(t, p)$ for $k \in \mathbb{Z}^+, p \in L_A$

Model case: proof of easier statement

want to show: $\operatorname{hmi}(L_A, \xi_A) \geq 2 \operatorname{md}(A, 0)$

- goal: find a contact form α_A for ξ_A s.t. $md(\alpha_A) = 2 md(A, 0)$
- $\triangleright \mathcal{O}(-1)$ is a Hermitian line bundle, link L_A is the radius ϵ circle bundle on $\mathcal{O}(-1)$
- $\blacktriangleright \pi = \tilde{\pi}|_{I_A}$ makes L_A a circle bundle over X
- consider the contact form $\alpha_A := -\frac{1}{4\pi c^2} d^c (\sum_i |z_i|^2)|_{L_A}$
- all Reeb orbits are of the form $\gamma: \mathbb{R}/k\mathbb{Z} \to L_A, \gamma(t) = B(t, p)$ for $k \in \mathbb{Z}^+, p \in L_A$
- \triangleright compute: $CZ(\gamma) = 2(a+1)k$

F be the fiber containing γ , s_F a non-zero section of $K_{\widetilde{A}}^{\otimes N}$. dofino

$$Q_F : \mathbb{R}/k\mathbb{Z} \to U(1), t \mapsto [z \mapsto P(B_K(t, s_F(\gamma(0)))/s_F(\gamma(t)))]$$

$$\bullet \text{ compute: } \deg Q_F = -kN, \ s^{-1}(0)|_F] = aN$$

 \Rightarrow ISFT(γ) = 2(a+1)k - $\frac{1}{2}(2n-2) + (n-3) = 2(a+1)k - 2$ \Rightarrow mi(a_{α}) = 2 md(A, 0)

Isolated singularities

Main results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion O

Model case: proof of harder statement

to show: any contact form β for ξ_A admits a Reeb orbit γ with $\mathsf{ISFT}(\gamma) < 0$ or $\mathsf{ISFT}(\gamma) \le 2 \operatorname{md}(A, 0)$

- Compactify $\tilde{\pi} : \tilde{A} \to x$ to a \mathbb{CP}^1 -bundle $\check{S} := P(\tilde{A} \oplus \mathbb{C})$.
- embed (L_A, ξ_A) as a contact hypersurface inside \check{S} .
- neck-stretching: shows L_A admits a Reeb orbit in fact, limiting curve has negative ends asymptotic to Reeb orbits γ_i,
- lives in a moduli space of virtual dimension $2 \operatorname{md}(A, 0) \sum_{i} \operatorname{ISFT}(\gamma_{i}) \geq 0$
- Thus, 2 md(A, 0) < 0 implies ISFT(γ_i) < 0 for some i; md(A, 0) ≥ 0 implies ISFT(γ_i) ≤ 2 md(A, 0) for some i.

Isolated singularities

Main results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Technical apparatus for the proof

- contact-type hypersurface L_A in symplectic manifold \check{S}
- ▶ symplectic dilation (similar procedure to neck-stretching) → contact embedding of L_A into Š
- ► Gromov-Witten theory: L_A admits a special holomorphic curve (dim $M \le 6$ → rigorous transversality results)
- neck-stretching: L_A admits a Reeb orbit
- dimension computation

Neck-stretching step

 (M,ω) compact symplectic manifold which has a contact type hypersurface $C \subset M$ so that

- 1. $M \setminus C$ has two connected components M_- and M_+ .
- 2. There are codimension 2 submanifolds $Q_{\pm} \subset M_{\pm}$, and $[A] \in H_2(M; \mathbb{Z})$ s.t. $[A] \cdot [Q_{\pm}] \neq 0$.
- 3. For every compatible acs J, there exists a compact genus 0 J-holomorphic curve $u: \Sigma \to M$ representing [A].

Then C has at least one Reeb orbit.

Proof sketch.

- Choose a collar neighbourhood of C and a curve u as in (3)
- Stretched curves u_i converge to some s. inj. limit u_∞
- ▶ since [u] = A, each u_i must intersect the manifolds Q_{\pm}
- ▶ in particular, u_i intersects M_- and M_+ , hence $u_i|_{u^{-1}(M_+)}$ is a proper map with non-compact domain for all i
- ⇒ the domain of u_{∞} is not compact; *C* has a Reeb orbit.

Isolated singularities

Main results 0000

Outline of proof

Conclusion 0

Gromov-Witten invariants

Theorem

Let (M, ω) compact symplectic manifold, $[A] \in H_2(M; \mathbb{Z})$ satisfying $c_1(M, \omega)([A]) + n - 3 = 0$. There is an invariant $GW_0(M, [A], \omega) \in \mathbb{Q}$ satisfying the following properties,

- 1. If $GW_0(M, [A], \omega) \neq 0$, for any compactible acs J there exists a compact nodal J-holomorphic curve representing [A].
- 2. Given a smooth family of symplectic forms $(\omega_t)_{t \in [0,1]}$ on M with $\omega_0 = \omega$, then $GW_0(M, [A], \omega_0) = GW_0(M, [A], \omega_1)$.
- Suppose (M, ω) admits a compatible acs J so that (M, J) is biholomorphic to a complex manifold and for all genus 0 J-holomorphic curves u: Σ → M, the domain of u is biholomorphic to CP¹ and u*TM is a direct sum of complex line bundles of degree ≥ -1. Then GW₀(M, [A], ω) counts unparametrized connected
 - genus 0 J-holomorphic curves representing [A].

Main results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusions

- 1. Algebro-geometric properties of an isolated singularity relate to symplectic filling properties of its link.
- 2. The link of an isolated singularity in an affine variety carries a contact structure.
- The minimal discrepancy is strongly related to computing Conley-Zehnder indices on the link. For instance, this computations determines if the singularity is canonical or terminal.