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Outline

I Motivation: RP2n−1 is not exactly fillable
I Background: varieties, isolated singularities and their links
I Main results: minimal discrepancy and highest minimal index
I Outline of proof
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Exact fillability of projective space

hierarchy of symplectic fillings: in order of strictness,

tight < weak < strong < exact < Stein = Weinstein.

Theorem (Zhou 2020)
(RP2n−1, ξstd) is not exactly fillable for n 6= 2k .
Consider the action of Zk on Cn (multiply by e2πi/k in each
component)

Theorem (Zhou 2020)
If k is prime and satisfies (an topological condition which implies n > k),
the quotient (S2n−1/Zk , ξstd) has no exact filling.
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Exact fillability of projective space: about Zhou’s proof

Theorem (Zhou 2020)
If k is prime and satisfies (an topological condition which implies n > k),
the quotient (S2n−1/Zk , ξstd) has no exact filling.

Proof outline.
I If W is an exact filling of (S2n−1/Zk , ξstd) for n > k,
⊕iH2i (W ;R) ≤ k and ⊕iH2i+1(W ;R) ≤ k − 2.
Uses neck-stretching + spectral sequence for a clever filtration
of SH.

I Using the top. assumption, deduce a contradiction

Symplectic part uses only n ≥ k + 1!
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Putting Zhou’s proof in context

I Cn/Zk is an (affine) algebraic variety, with an isolated
singularity at 0

I S2n−1/Zk is the link of the singularity at 0

Miracle
n ≥ k + 1⇔ 0 is a terminal singularity of Cn/Zk .

Conjecture (Zhou 2020)
If G 6 U(n) finite and Cn/G has a terminal singularity at 0,
its link has no (symp. aspherical or Calabi-Yau) filling.
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Algebraic geometry concepts: algebraic varieties

I (complex) affine space is An := {(a1, . . . , an) : ai ∈ C}
I affine (algebraic) variety

X = V (f1, . . . , fk) = {a ∈ An : f1(a) = · · · = fk(a) = 0}

for fk ∈ C[x1, . . . , xn]
I equivalently, consider R := k[t1, . . . , tn]/〈f1, . . . , fk〉

is a finitely generated C-algebra, coordinate-free definition
I X is irreducible iff there are no algebraic sets Y ,Z ⊂ X s.t.

X = Y ∪ Z .
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Algebraic geometry concepts: singularities

Let X = V (〈g1, . . . , gr 〉) ⊂ An be an algebraic variety.
I a ∈ X is regular iff the Jacobian (∂gi

∂xj
(a)) has maximal rank,

otherwise a singular point or singularity
I tangent space of a ∈ X is TaX = {v ∈ Cn : J(a)v = 0},

where J(a) = (∂gi
∂xj

(a))ij is the Jacobian of the gi

I X has dimension dimX = n − rk(J(a)) = n − dimTaX ,
where a ∈ X is any regular point.

I singular set Sing(X ) = {a ∈ X : singular} ⊂ X
is (Zariski) closed proper subset, hence an algebraic subvariety

⇒ X \ Sing(X ) ⊂ X is an open dense subset
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Key concepts: link of a singularity

A ⊂ CN irreducible affine (algebraic) variety with dimC A = n
0 ∈ A isolated singularity (perhaps smooth, i.e. a regular point)
I link of A is LA := A ∩ {

∑N
i=1 |zi |2 = ε2} for small ε > 0.

I Fact. LA depends only on the germ of A near 0;
in particular, LA is independent of the choice of ε.

I Fact. LA is a differentiable manifold of (real) dimension 2n− 1.
I Observation. Near 0, A is homeomorphic to a cone over LA.
I Trivial Example. If A is smooth at 0, then LA is diffeo to a

sphere.
I Fact. ξA := ξstd|TLA is a contact structure on LA.
I Observe that ξA = TLA ∩ Jstd(TLA)
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A peek at different kinds of singularities

I (regular points)
I normal singularities −→ normalisation (then:

codim Sing(X ) ≥ 2)
I topologically smooth singularities: LA ∼=diff S2n−1

I For an isolated singularity in dimC(A) ≥ 2,

num. Q-Gorenstein ⊃ Q-Gorenstein ⊃ complete intersection sing.;

0 is numerically Q-Gorenstein ⇔ c1(ξA) = c1(TA|LA) is torsion.
I canonical singularity: numerically Q-Gorenstein and

md(A, 0) ≥ 0
I terminal singularity: numerically Q-Gorenstein and

md(A, 0) > 0
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Capturing local behaviour: local rings
I type of singularity is “local behaviour”

capture local behaviour near x ∈ X using the local ring at x
I R non-zero unital communitative ring

I I ⊂ R is an ideal of R iff I 6 (R,+) and ri = ir ∈ I for all
i ∈ I, r ∈ R

I a proper ideal I ⊂ R is prime iff ab ∈ I implies a ∈ I or b ∈ I
I a proper ideal I ⊂ R is maximal iff @ ideal J s.t. I ( J ( R
I maximal ideals are prime

I Fact. For a = (a1, . . . , an) ∈ An, each
ma := 〈x1 − a1, . . . , xn − an〉 ⊂ C[x1, . . . , xn] is a maximal ideal
of C[x1, . . . , xn], and every maximal ideal is of this form.

I given a prime ideal p ⊂ R, localisation at p is
Rp := {r/s : r ∈ R, s ∈ R \ p}/ ∼, equivalence by cancellation.

I Definition. The local ring of a variety X ⊂ An at a ∈ X is
the localisation k[X ]ma of the coordinate algebra k[X ] of X at
the maximal ideal ma corresponding to a.

I local ring Op(X ) encodes local properties of X at p
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Normal singularities

I Definition. Let φ : R → S be a ring homomorphism (“S is an
R-algebra”). x ∈ S is integral over R iff f (x) = 0 for some
monic polynomial f ∈ R[t]

I Fact. The set of integral elements of S is a subalgebra of S,
called the normalisation of S.

I Definition. An integral domain R is normal iff it equals its
normalisation in its quotient field.

I Definition. An affine variety X is normal at x ∈ X if the
local ring at this point is normal. X is normal iff it is normal
at every point.
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Normal singularities (cont.)

X irreducible affine variety
I Definition. X is normal at x ∈ X if the local ring at this

point is normal. X is normal iff it is normal at every point.
I Theorem. X is normal at every regular point.
I Theorem. The singular locus

Sing(X ) = {a ∈ X : X singular at a} is a proper algebraic
subset of X .

I Proposition. If X is normal, dim Sing(X ) ≤ dimX − 2.
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Normal singularities: geometric intuition

Figure: Pictures reproduced from Eisenbud: Commutative algebra (1995), p.
128.

I Consider f = y2 − x3 resp. f = y2 − x2(x + 1) ∈ C[x , y ]
I compute: X = V (f ) has one singular point, p = (0, 0)
I consider y/x ∈ Op(X ): bounded along X near p
I algebraically: y/x is integral, e.g. (y/x)2 − x = 0 (left)

Theorem. An element p(x)/q(x) of the quotient field is integral
over C[X ] iff each x ∈ X has a neighbourhood U s.t. |p(x)

q(x) | is
bounded at all points of U where q is non-zero.
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Normalisation and resolution of varieties

I normalise a variety X using its coordinate algebra R := C[X ]
I Recall. anti-equivalence of categories

{affine algebraic varieties} ←→{finitely generated C-algebras},
variety X 7−→ coordinate algebra C[X ]

I normalisation R̃ of R corresponds to the normalisation X̃ of X
I natural inclusion R ↪→ R̃ into normalisation R̃
I induces a birational map π : X̃ → X
I A resolution of an algebraic variety X is a non-singular variety

X̃ together with a proper birational map π : X̃ → X .
I Theorem (Hironaka ’64). Every variety has a resolution.
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Normalisation: geometric intuition

consider X = V (f ) for f = y2 − x3 or f = y2 − x2(x + 1) ∈ C[x , y ]

Figure: Normalisation of the curves from the previous example.
Pictures reproduced from Eisenbud: Commutative algebra (1995), p. 141.

algebraically: normalisation of R = C[X ] is C[t]
geometrically: normalisation X̃ ∼= C
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Known results about singularities and their links

I Theorem (Mumford ’61). In complex dimension two, every
normal topologically smooth singularity is smooth.

I Many counterexamples in dimension ≥ 3, such as
A := {x2 + y2 + z2 + w2 = 0} ⊂ C4.

I Theorem (Ustilovski ’99). For each m > 0, there are
infinitely many singularities with links diffeomorphic to S4m+1,
but not contactomorphic.

I Theorem (Kwon-van Koert ’16). For weighted
homogeneous hypersurface singularities {

∑
zkj

j = 0}, (LA, ξA)
determines whether

∑
j 1/kj > 1⇔ 0 is a canonical singularity.
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The highest minimal index

I (C2n−1, ξ = kerα) co-oriented contact manifold
→ symplectic vector bundle (dα|ξ, ξ)

I first Chern class c1(ξ) := c1(ξ, J) ∈ H2(C ;Z) for J compatible
acs on dα|ξ

I Suppose Nc1(ξ) = 0 and H1(C ;Q) = 0
−→ Conley-Zehnder index CZ (γ) ∈ 1

NZ of a Reeb orbit γ
I lower SFT index

lSFT(γ) := CZ (γ) + (n − 3)− 1
2 dim ker(Dγ(0)φL|xi − id)

I minimal SFT index mi(α) := infγ lSFT(γ)
I highest minimal SFT index hmi(C , ξ) := supα mi(α).
I Observation. hmi(C , ξ) is a contact invariant.
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Main results: relating minimal discrepancy and hmi

Main Theorem (McLean ’15)
Suppose A has a normal isolated singularity at 0
that is numerically Q-Gorenstein with H1(LA;Q) = 0. Then,
I if md(A, 0) ≥ 0 then hmi(LA, ξA) = 2md(A, 0),
I if md(A, 0) < 0, then hmi(LA, ξA) < 0.

I Recall. 0 is canonical if md(A, 0) ≥ 0, terminal if
md(A, 0) > 0

I Conley-Zehnder indices on LA determine whether 0 is canonical
or terminal



Motivation Isolated singularities Main results Outline of proof Conclusion

Main results: relating minimal discrepancy and hmi

Main Theorem (McLean ’15)
Suppose A has a normal isolated singularity at 0
that is numerically Q-Gorenstein with H1(LA;Q) = 0. Then,
I if md(A, 0) ≥ 0 then hmi(LA, ξA) = 2md(A, 0),
I if md(A, 0) < 0, then hmi(LA, ξA) < 0.

I Recall. 0 is canonical if md(A, 0) ≥ 0, terminal if
md(A, 0) > 0

I Conley-Zehnder indices on LA determine whether 0 is canonical
or terminal



Motivation Isolated singularities Main results Outline of proof Conclusion

Main results: relating minimal discrepancy and hmi

Main Theorem (McLean ’15)
Suppose A has a normal isolated singularity at 0
that is numerically Q-Gorenstein with H1(LA;Q) = 0. Then,
I if md(A, 0) ≥ 0 then hmi(LA, ξA) = 2md(A, 0),
I if md(A, 0) < 0, then hmi(LA, ξA) < 0.

I Recall. 0 is canonical if md(A, 0) ≥ 0, terminal if
md(A, 0) > 0

I Conley-Zehnder indices on LA determine whether 0 is canonical
or terminal



Motivation Isolated singularities Main results Outline of proof Conclusion

Main results: relating minimal discrepancy and hmi

Main Theorem (McLean ’15)
Suppose A has a normal isolated singularity at 0
that is numerically Q-Gorenstein with H1(LA;Q) = 0. Then,
I if md(A, 0) ≥ 0 then hmi(LA, ξA) = 2md(A, 0),
I if md(A, 0) < 0, then hmi(LA, ξA) < 0.

I Recall. 0 is canonical if md(A, 0) ≥ 0, terminal if
md(A, 0) > 0

I Conley-Zehnder indices on LA determine whether 0 is canonical
or terminal



Motivation Isolated singularities Main results Outline of proof Conclusion

Main results: relating minimal discrepancy and hmi
I Definition. If (M, ξ) is contactomorphic to some link (LA, ξA),

it is Milnor fillable, and A is a Milnor filling of M.
I Example. (S2n−1, ξstd) is Milnor fillable; its Milnor filling is Cn.
I Corollary. If A is normal and (LA, ξ) is contactomorphic to

(S5, ξstd), then A is smooth at 0.
⇒ (S5, ξstd) has a unique smooth Milnor filling up to

normalization.
Extends Mumford’s results to complex dimension three.

I Observation. Milnor fillable contact structures are strongly
fillable.

I Conjecture (Shukorov ’02). If A is normal and numerically
Q-Gorenstein with md(A, 0) = n − 1, then A is smooth at 0.

I Corollary. If the conjecture holds, A is normal and
(LA, ξA) ∼= (S2n−1, ξstd) (any n), then A is smooth at 0.
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Canonical bundles and Q-Cartier divisors

I Definition. X non-singular algebraic variety with dimC X = n.
The canonical bundle of X is Ω = ΛnT ∗X .

I X normal variety. A (Weil) Q-divisor is a finite formal linear
combination D =

∑k
j=1 ajEj with aj ∈ Q, Ej ⊂ X irreducible

codimension 1 subvariety.
I A Q-divisor D is Q-Cartier if we can choose the Ej to be

locally defined by one equation.
I Fact. If X is non-singular, every Q-divisor is Q-Cartier.
I Fact. Every line bundle on a normal variety X is the class of

some Cartier divisor.
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Numerically Q-Gorenstein singularities

A (irreducible) algebraic variety with an isolated singularity at 0
I A smooth normal crossings divisor is a Cartier divisor whose

components only intersect transversely. Near each point, the
divisor looks like the intersection of coordinate hyperplanes.

I Take a resolution π : Ã→ A of A s.t.
π−1(0) =

⋃
i Ei for smooth normal crossing divisors Ei ,

and π is an isomorphism away from these divisors.
I Definition. A is numerically Q-Gorenstein

iff there exists a Q-Cartier divisor Knum
Ã/A

:=
∑

j Ej s.t.
C · (Knum

Ã/A
− KÃ) = 0 for any projective algebraic curve

C ⊂ π−1(0).
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Defining the minimal discrepancy
I Definition. A is numerically Q-Gorenstein

iff there exists a Q-Cartier divisor Knum
Ã/A

:=
∑

j Ej s.t.
C · (Knum

Ã/A
− KÃ) = 0 for any projective algebraic curve

C ⊂ π−1(0).
I Fact. The aj ∈ Q are unique; aj is called the discrepancy of

Ej .
I Definition. The minimal discrepancy md(A, 0) of A is the

infimum of aj over all resolutions π.
I Proposition. If π is a fixed resolution, not the identity, then

md(A, 0) =
{

minj aj if aj ≥ −1 ∀j ∈ {1, . . . , l}
−∞ otherwise

If A is smooth at 0, we have md(A, 0) = dimC A− 1.
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Strategy of McLean’s proof

I easier part: hmi(LA, ξA) ≥ 2md(A, 0)
I harder parts: If md(A, 0) ≥ 0 then hmi(LA, ξA) ≤ 2md(A, 0);

if md(A, 0) < 0 then hmi(LA, ξA) < 0.
I model case: A is the cone over a projective variety X ;

we skip explaining the proof in the general case
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Model case: cone singularity

I Model case: A ⊂ CN is the cone of a smooth connected
projective variety X ⊂ CPN−1

I resolution Ã by blowing up at the origin;
O(−1) = (π̃ : Ã→ X ) is the tautological line bundle

I numerically Q-Gorenstein ⇔ c1(KÃ|LA ;Q) = 0
I LA → Ã \ X is a homotopy equivalence: c1(KÃ|Ã\X ;Q) = 0

I for some N > 0, K⊗N
Ã

has a smooth section s which is
transverse outside a compact set

I discrepancy of A is the a ∈ Q satisfying

[s−1(0)] = aN(X ) ∈ H2n−2(Ã;Q) = H2n−2(X ;Q),

minimal discrepancy md(A, 0) is a if a ≥ −1, otherwise −∞.
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Model case: proof of easier statement
want to show: hmi(LA, ξA) ≥ 2md(A, 0)
I goal: find a contact form αA for ξA s.t. md(αA) = 2md(A, 0)
I O(−1) is a Hermitian line bundle,

link LA is the radius ε circle bundle on O(−1)
I π = π̃|LA makes LA a circle bundle over X
I consider the contact form αA := − 1

4πε2 d
c(

∑
j |zj |2)|LA

I all Reeb orbits are of the form
γ : R/kZ→ LA, γ(t) = B(t, p) for k ∈ Z+, p ∈ LA

I compute: CZ (γ) = 2(a + 1)k
I F be the fiber containing γ, sF a non-zero section of K⊗N

Ã
.

I define
QF : R/kZ→ U(1), t 7→ [z 7→ P(BK (t, sF (γ(0)))/sF (γ(t)))]

I compute: degQF = −kN, s−1(0)|F ] = aN
⇒ lSFT(γ) = 2(a + 1)k − 1

2(2n − 2) + (n − 3) = 2(a + 1)k − 2
⇒ mi(aα) = 2md(A, 0)
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Model case: proof of harder statement

to show: any contact form β for ξA admits a Reeb orbit γ with
lSFT(γ) < 0 or lSFT(γ) ≤ 2md(A, 0)
I Compactify π̃ : Ã→ x to a CP1-bundle Š := P(Ã⊕ C).
I embed (LA, ξA) as a contact hypersurface inside Š.
I neck-stretching: shows LA admits a Reeb orbit

in fact, limiting curve has negative ends asymptotic to Reeb
orbits γi ,

I lives in a moduli space of virtual dimension
2md(A, 0)−

∑
i lSFT(γi ) ≥ 0

I Thus, 2md(A, 0) < 0 implies lSFT(γi ) < 0 for some i ;
md(A, 0) ≥ 0 implies lSFT(γi ) ≤ 2md(A, 0) for some i .
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Technical apparatus for the proof

I contact-type hypersurface LA in symplectic manifold Š
I symplectic dilation (similar procedure to neck-stretching)
→ contact embedding of LA into Š

I Gromov-Witten theory: LA admits a special holomorphic curve
(dimM ≤ 6 → rigorous transversality results)

I neck-stretching: LA admits a Reeb orbit
I dimension computation



Motivation Isolated singularities Main results Outline of proof Conclusion

Neck-stretching step
(M, ω) compact symplectic manifold which has a contact type
hypersurface C ⊂ M so that
1. M \ C has two connected components M− and M+.
2. There are codimension 2 submanifolds Q± ⊂ M±, and

[A] ∈ H2(M;Z) s.t. [A] · [Q±] 6= 0.
3. For every compatible acs J , there exists a compact genus 0

J-holomorphic curve u : Σ→ M representing [A].
Then C has at least one Reeb orbit.
Proof sketch.
I Choose a collar neighbourhood of C and a curve u as in (3)
I Stretched curves ui converge to some s. inj. limit u∞
I since [u] = A, each ui must intersect the manifolds Q±
I in particular, ui intersects M− and M+, hence ui |u−1(M+) is a

proper map with non-compact domain for all i
⇒ the domain of u∞ is not compact; C has a Reeb orbit.
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Gromov-Witten invariants
Theorem
Let (M, ω) compact symplectic manifold, [A] ∈ H2(M;Z) satisfying
c1(M, ω)([A]) + n − 3 = 0. There is an invariant
GW0(M, [A], ω) ∈ Q satisfying the following properties,
1. If GW0(M, [A], ω) 6= 0, for any compactible acs J there exists a

compact nodal J-holomorphic curve representing [A].
2. Given a smooth family of symplectic forms (ωt)t∈[0,1] on M

with ω0 = ω, then GW0(M, [A], ω0) = GW0(M, [A], ω1).
3. Suppose (M, ω) admits a compatible acs J so that (M, J) is

biholomorphic to a complex manifold and for all genus 0
J-holomorphic curves u : Σ→ M, the domain of u is
biholomorphic to CP1 and u∗TM is a direct sum of complex
line bundles of degree ≥ −1.
Then GW0(M, [A], ω) counts unparametrized connected
genus 0 J-holomorphic curves representing [A].



Motivation Isolated singularities Main results Outline of proof Conclusion

Conclusions

1. Algebro-geometric properties of an isolated singularity relate to
symplectic filling properties of its link.

2. The link of an isolated singularity in an affine variety carries a
contact structure.

3. The minimal discrepancy is strongly related to computing
Conley-Zehnder indices on the link. For instance, this
computations determines if the singularity is canonical or
terminal.
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