Differential Geometry IV Problem Set 4

Prof. Dr. Thomas Walpuski

2022-04-27

Due: 2022-05-18

(1) Let $D \in \{R, C, H\}$ Let P be a $D \otimes C\ell_{0,n}$ -module. Prove that there is a Euclidean inner product $\langle \cdot, \cdot \rangle$ on P such that

$$\langle v\phi, v\psi \rangle = -|v|^2 \langle \phi, \psi \rangle$$

and, moreover, i is orthogonal if D = C and i, j, k are orthogonal if D = H.

- (2) Establish the exceptional isomorphisms
 - (a) $Spin_{0.3} \cong Sp(1) \cong SU(2)$.
 - (b) $\operatorname{Spin}_{1,2} \cong \operatorname{SL}_2(\mathbf{R})$.
 - (c) $Spin_{0,4} \cong Sp(1) \times Sp(1) \cong SU(2) \times SU(2)$.
 - (d) $Spin_{1,3} \cong SL_2(\mathbb{C})$.
 - (e) $Spin_{0.5} \cong Sp(2)$.
 - (f) $Spin_{0.6} \cong SU(4)$.
- (3) Since $\operatorname{Spin}_{r,s} \subset (\operatorname{C}\ell^0_{r,s})^{\times}$ is a Lie subgroup, $\mathfrak{spin}_{r,s} \subset \operatorname{C}\ell^0_{r,s}$ with the Lie bracket agreeing with the commutator. Set $b = b_{r,s} \coloneqq \frac{1}{2}p_{r,s}$, $\frac{1}{2}$ of the polarisaton of $q_{r,s}$. Denote by $\kappa \colon \Lambda^2\mathbf{R}^{r+s} \to \operatorname{C}\ell^0_{r,s}$ the map induced by the quantisation map. Identify $\Lambda^2\mathbf{R}^{r+s} = \mathfrak{so}_{r,s}$ via

$$(u \wedge v)w := ub_{r,s}(v,x) - vb_{r,s}(u,x).$$

Prove the following:

- (a) $\mathfrak{spin}_{r,s}$ agrees with the image of the quantisation map $\kappa\colon\Lambda^2\mathbf{R}^{r+s}\to\mathbf{C}\ell^0_{r,s}$.
- (b) Lie(Ad) $\circ \kappa(\alpha) = 2\alpha$ for every $\alpha \in \Lambda^2 \mathbf{R}^{r+s} = \mathfrak{so}_{r,s}$.

(4) What double covers $\operatorname{Pin}_{r,s}^{\star} \to \operatorname{O}_{r,s}$ are there such that the following diagram commutes

