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• Let G be a Lie group (usually G = SO(3) or G = SU(2)),
P

π−→ X be a principal G bundle over a manifold X with Lie algebra
valued connection A. Given V ∈ Vect with representation
ρ : G → GL(V ), the usual associated vector bundle is
E := P ×G V .

• G y V via ρ, and the connection A on P
π−→ X induces a

connection resp. covariant derivative E ∇A on E
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• Note that while the connection A on P
π−→ X lives in Ω1(P, g),

the induced connection on E , for simplicity also denoted by A, is
best understood in a local trivialisation Uα.

• On each Uα, the connection 1-form Aα is a
gl(V ) := Lie(GL(V ))-valued one-form

• In any other trivialisation Uβ, with gαβ the transition maps of
the bundle E , A transforms via

Aβ = g−1αβ Aαgαβ + ig−1αβ dgαβ
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• The representation ρ : G → GL(V ) induces a representation of
Lie algebras ρ∗ : g→ gl(V ) • For simplicity denote ρ∗(g) = g. The

adjoint action G y ρ∗(g) is also defined va the representation ρ.

• Recall that the adjoint bundle gE is the subbundle of End(E )
defined by

gE := P ×G g

• Ex: if G = SU(2) and V corresponds to fundamental

representation (from Lie theory), then gE consists of the
Hermitian, trace-free endomorphisms of the assoc. bundle E .
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• In light of transformation rule, one can show that the difference
of two connections is a one form with values in the adjoint bundle,
i.e. lives in Ω1(gE ). The space of all connections A is then an
affine space with tangent space given by TAA = Ω1(gE ).

• The curvature FA of the of the associated bundle E can also be
defined in terms of local trivialisations: on Uα the curvature Fα is
a gl(V )-valued two-form which transforms via

Fβ = g−1αβ Fαgαβ

• This shows that the curvature can be seen as an adjoint

bundle-valued two-form, FA ∈ Ω2(gE ).
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Gauge Transformations

• Recall that gauge transformations are automorphisms of the
associated bundle E as above which preserve the fiber structure
and descend to the identity on X . They can be viewed as sections
of the automorphism bundle Aut(E ), and form an
infinite-dimensional Lie group which we denote by G– the group
structure being pointwise multiplication.

• The Lie algebra of G := Γ(Aut(E )) is given by the adjoint-bundle
valued zero forms, Lie(G) = Ω0(gE ). This is seen by looking at
local charts: on an open set Uα the gauge transformation is given
by a map uα : Uα → G , where G acts through the representation
ρ. In this language, gauge transformations thus act on connections
according to

u∗(Aα) = uαAαu
−1
α + iduαu

−1
α = Aα + i(∇Auα)u−1α
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where the covariant derivative has the form

∇Auα = duα + i [Aα, uα]

Gauge transformations also act on curvature via

u∗(Fα) = uαFαu
−1
α

• For analytical purposes, throughout this talk we will always think
of A as the space of W 2,l−1 connections on E for l > 2 and G as
consisting of class W 2,l gauge transformations. Later however, we
will see that these spaces are completely independent of the choice
of l > 2.
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Short refresher:
• The Yang-Mills functional YM(ω) of a connection 1-form ω splits

YM(ω)

∫
X
|Fω|2dµ =

∫
X

(
|F+
ω |2 + |F−ω |2

)
dµ

µ being the Riemannian volume element. The connections with
Fω = F−ω are the anti-self-dual instantons, their most salient
property being that they minimise the Yang-Mills action

SYM =
1

2

∫
X
F ∧ ?F

• The anti-self-dual condition is a non-linear diffeq for non-abelian
gauge connections, and defines a subspace of the infinite
dimensional space of connections which can be regarded as the
zero set of the section

σ : A → Ω2,+(gE )
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given by

σ(A) = F+
A

• The goal of this talk is to define a finite-dimensional moduli
space, starting from the zero set σ−1(0) of σ. The section σ is
equivariant with respect to the action of the gauge group,

σ(u∗(A)) = u∗(σ(A)

meaning that if a gauge connection is ASD, then it will remain
ASD under any gauge transformation.
• The idea is that we obtain a finite-dimensional moduli space by
quotienting out σ−1(0) by the action of the gauge group G. Due
to the G-equivariance of σ, we can define the moduli space of ASD
connections MASD as

MASD := {[A] ∈ A/G : σ(A) = 0}

with [A] being the gauge equivalence class of the connection A,
well-definedness coming from G-equivariance.
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• The L2 metric on A

||A1 − A2|| =

(∫
X
|A1 − A2|2dµ

)1/2

where dµ denotes the Riemannian volume element, is preserved by
the action of the gauge group, and therefore descends to a fairly
natural ‘distance function’ on the space B, given by

d([A], [B]) := inf
g∈G
||A− g(B)||

• All of the metric properties follow fairly readily, except
nondegeneracy, it’s not immediately clear that
d([A], [B]) = 0 =⇒ [A] = [B], so let’s prove this.
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Proof:
Suppose that [A], [B] ∈ B and d([A], [B]) = 0, and let Bα be a
sequence of connections in A, all gauge equivalent to B, and
converging in L2 to A. We need to show that A and B are gauge
equivalent. Now since the Bα are all gauge equivalent to B there
exist gauge transformations {uα} such that Bα = uα(B).

dBuα = (B − Bα)uα

This follows from the formula Bα = uαAu
−1
α − duαu

−1
α for the

action of gauge transformations, which can be explored further in
Donaldson Kronheimer 2.3.7. The uα are uniformly bounded due
to compactness of the structure group G . This also shows that the
first derivatives dBuα are bounded in L2, so taking a subsequence,
we can suppose that the uα, if we regard them as sections of the
vector bundle End(E ) converge weakly in W 1,2,
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and converge strongly in L2 to a limit u which also satisfies the
linear equation

dBu = (B − A)u

because if ϕ ∈ Γ(End(E )) is any smooth test section, we have

〈dbu, ϕ〉 = lim
α
〈dbuα, ϕ〉 = lim

α
〈(B − Bα)uα, ϕ〉 = 〈(B − A)u, ϕ〉

since Bαuα 7→ Au in L1. This equation for u is an overdetermined
elliptic equation with W l−1,2 coefficients, so we can bootstrap to
get that u ∈W l ,2 (for those unfamiliar, bootstrapping refers to the
inference of regularity for weak solutions to differential operators,
for example ∆u ∈W k,2 =⇒ u ∈W k+2,2 for a generalised
Laplace operator ∆). u is clearly a unitary section in End(E ). �

This fact now allows us to conclude that B is Hausdorff in the
quotient topology.
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Reducible and Irreducible Connections

• In order to analyse the moduli space MASD we first consider the
map

G × A → A

and the quotient space A/G of connections by the sections G of
Aut(E ). If the action of G on A is not free, then there will be
singularities in the quotient space, so we make things work by
introducing the isotropy group of a connection A ∈ A:

ΓA := {u ∈ G : u(A) = A}

measuring the extent to which the action G y A of G on A is not
free. If the isotropy group is the center of the group
Z (G ) := {z ∈ G : ∀g ∈ G , zg = gz}, then the action is free, in
which case we say that the connection A is irreducible. If the
isotropy group is not the center Z (G ), the connection A is
reducible.
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• Reducibility of a connection A on a G principal bundle is
equivalent to the statement that for each point x ∈ X , the
holonomy maps Tγ of loops based at x lie in a proper subgroup of
the automorphism group of the bundle at each point,
Aut(Ex) ∼= G .
• Recall that given a rank k vector bundle E , a connection A on
E , and a piecewise smooth loop γ ∈ X [0,1] based at x ∈ X , we
have the parallel transport map Pγ : Ex → Ex induced by the
connection on the fibre which lives in GL(Ex), and the holonomy
group of A based at x is defined as

Holx(A) := {Pγ ∈ GL(Ex) : γ ∈ X [0,1] is a loop based at x}

• the holonomy map for a loop γ is the map sending γ to
hol(γ) ∈ Aut(Ex), giving the linear transformation of vectors after
to parallel transport around the loop γ.



15

• If the base space is connected, then it’s not to difficult to show
that we can restrict attention to a single fibre and obtain a
holonomy group HA ⊆ G , which can be shown to be a closed Lie
subgroup of G .
• In physics, reducible connections are well known, as they
correspond to gauge configurations in which the gauge symmetry is
broken to a smaller subgroup. For example, the SU(2) connection

A =

[
α 0
0 −α

]
is in actuality a U(1) connection. More on this can be found in the
physics literature.
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• The following lemma which we state without proof gives us the
relationship between the isotropy group of a connection and its
holonomy group.

Lemma: Given any connection A over a connected base X , the
isotropy group ΓA of A is isomorphic to the center of the holonomy
group HA of A in G .

• If you try to prove this, regard both HA and ΓA as subgroups of
the automorphism group Aut(Ex) for x ∈ X , and to note that the
center Z (G ) is always contained in the isotropy group ΓA.
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• Let’s denote the the open subset of A consisting of irreducible
connections by A∗. Since A∗ consists of connections whose
isotropy group is minimal, we can write

A∗ := {A ∈ A : ΓA = Z (G )}

• By definition then, the reduced group of gauge transformations

Ĝ := G/Z (G ) acts freely on the space A∗ of irreducible
connections.
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• Let u ∈ G be a section of Aut(E ), and let us recall how u acts on
connections:

u∗(Aα) = Aα + i(∇Auα)u−1α

we then see that the isotropy group can be written as

ΓA = {u ∈ G : ∇Au = 0}

• That is, the isotropy group at a connection A is given by the
covariantly constant sections of the automorphism bundle of the
associated bundle E . ΓA is a Lie group (as a closed subgroup of G )
whose elements are the covariantly constant sections of the bundle
Aut(E ), and has Lie algebra given by

Lie(ΓA) := {f ∈ Ω0(gE ) : ∇Af = 0}
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• Therefore, a useful way of detecting whether ΓA is bigger than
the center Z (G ) (i.e. has positive dimension, which occurs
precisely when there exist nontrivial covariantly constant sections),
is to study the kernel of the covariant derivative ∇A in the gE
valued zero forms Ω0(gE ) on X– the reducible connections then
correspond to a nontrivial kernel of

∇A : Ω0(gE )→ Ω1(gE )

• As an example, in the case of structure group being the special
unitary or special orthogonal groups SU(2), SO(3), which are the
most common structure groups appearing physical contexts,
reducible connections have exactly the form

A =

[
α 0
0 −α

]
and have isotropy group given by the circle group
ΓA/Z (G ) = U(1).
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• Topologically, this means that a SU(2) bundle E splits as

E = L⊕ L−1

where L is a complex line bundle, wheras a reducible SO(3) bundle
splits into a direct sum of a complex line bundle C with the trivial
rank-one real bundle R over the manifold X .

V = R⊕ C

• This can be derived by considering the real part of the

symmetric tensor product Sym2(E ) on E (the symmetric tensor
product is the space of symmetric, contravariant rank-2 tensors on
E , spanned by the basis derived from a basis {eα} of E given by
{eα � eβ}where x � y = 1

2(x ⊗ y + y ⊗ x))
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Local Models

• We now want to construct a local model for the moduli space.
That is, we want to characterise its tangent space at a point.

• The way in which we will do this, is by considering the tangent
space at an ASD connection A ∈ A which is isomorphic to Ω1(gE ),
and look for the directions in the vector space which preserve the
ASD condition, and are not gauge orbits, since we’re in any case
quotienting out by G = Γ(Aut(E ))

• Before we do this however, let’s first, as promised, obviate the
need for worrying about the index l in the Sobolev classes W 2,l−1

and W 2,l of A and G respectively.
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• For the following proposition, let’s temporarily denote the orbit
space by B(l), so that for each l > 2 and fixed G -bundle E we
have a moduli space M(l) ⊆ B(l) of W 2,l−1 ASD connections
mod W 2,l gauge transformations. A priori both of these spaces,
both as sets and as topological spaces do depend on l , however
this proposition alleviates our working memories slightly:

• Proposition: The natural inclusion of M(l + 1) in M(l) is a
homeomorphism.

• The essence of this proposition is the statement that if A is an
ASD connection of Sobolev class W 2,l−1 for l > 2, there exists a a
Sobolev class W 2,l gauge transformation u ∈ G such that the
image u(A) is of class W 2,l . I will not take the time here to prove
this, but a full proof can be found in Donaldson and Kronheimer
4.2.3.



23
• Now the condition that the directions in the tangent space at a
connection A are not gauge orbits amounts for us to finding slices
of the action of the reduced group of gauge transformation
Ĝ := G/Z (G ). The procedure is then to consider the derivative of
the map G × A → A mentioned earlier with respect to the G
variable at a point A ∈ A∗ (that is, at an irreducible connection
A), which gives a map

C : Lie(G)→ TAA

which coincides precisely with the covariant derivative

C = ∇A : Ω0(gE )→ Ω1(gE )

• Since there is a natural metric on Ω∗(gE ) (recall that one can
always take an inner product g on a vector space V and define one
on the k-fold tensor product via g(⊗ivi ,⊗iwi ) := 1

k!

∏
i g(vi ,wi )),

we can look at the formal adjoint operator

C ∗ : Ω1(gE )→ Ω1(gE )
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• Now it is a fact that given a linear map T : X → Y between two
finite-dimensional Hilbert spaces, there is always a decomposition
of the codomain Y into the image of T and the kernel of its
adjoint T ∗, Y = Im(T )⊕ ker(T ∗). This follows from the facts
that ker(T∗) = (Im(A))⊥ and Y = Im(T )⊕ Im(T )⊥ by the
definition of the orthogonal compliment.

• We can thus orthgonally decompose the tangent space at A into
the gauge orbit Im(C ) and its compliment

Ω1(gE ) = Im(C )⊕ Ker(C ∗)

• Locally this means that a neighbourhood of the equivalence class
of a connection [A] in A∗/G can be modelled by the kernel of the
adjoint of the covariant derivative ∇A, i.e. by Ker(∇∗A) ⊆ TAA.
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• Furthermore, the isotropy group ΓA acts naturally on Ω1(gE ) by
adjoint multiplication, i.e. in the same way gauge transformations
act on the curvature as mentioned earlier: u∗(Fα) = uαFαu

−1
α .

• If the connection A ∈ A is reducible, then the moduli space is
locally modelled on (Ker∇∗A)/ΓA.

• We also have the useful proposition: If A is an ASD connection
over X , then a neighbourhood of [A] in the moduli space is
modelled on a quotient f −1(0)/ΓA, where

f : KerδA → Coker(d+
A )

is a ΓA-equivariant map.
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• What we’ve done thus far is obtain a local model for the orbit
space A∗/G, but it still remains to enforce the ASD condition in
order to obtain a local model for the moduli space of ASD
connections mod gauge transformations.
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• To that end, let A ∈ A∗ be an irreducible ASD connection, i.e.
F+
A = 0, and let A + a for a ∈ Ω1(gE ) be another ASD connection.

The condition we obtain on a when we start from F+
A+a = 0 is

π+(∇Aa + a ∧ a) = 0 where π+ denoted the projection on to the
self-dual part of a two-form. Expanding linearly we have that
π+∇Aa = 0.

• But the map π+∇A is actually just the linearisation of the
section σ : A → Ω2,+(gE ), σ(A) = F+

A we introduced at the start,

π+∇A = dσ : TAA → Ω2,+(gE )

• The kernel of this linearisation then corresponds precisely to the

tangent vectors satisfying the ASD condition. We can now
describe the tangent space to MASD at A: we would like to take
the directions which are in Ker(dσ) but not in the image of the
gauge orbit Im(C ).
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• First note that since σ is gauge equivariant,
(σ(u∗(A)) = u∗(σ(A)) we have that Im(C ) ⊆ Ker(dσ), which can
be checked via direct computation,

π+∇A∇Aϕ = [F+
A , ϕ] = 0

for ϕ ∈ Ω0(gE ) since A is anti-self-dual. Now taking into account
the decomposition Ω1(gE ) = Im(C )⊕ Ker(C ∗), we finally arrive at

T[A]MASD
∼= (Ker(dσ)) ∩ Ker(∇∗A)

which can also be regarded as the kernel of the operator

D : Ω1(gE )→ Ω0(gE )⊕ Ω2,+(gE )

given by D = dσ ⊕∇∗A.
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• Now because Im(C ) ⊆ Ker(dσ), there is a short exact sequence
called alternately the Atiyah-Hitchin-Singer complex or the
instanton deformation complex which gives an elegant local
model for MASD :

0→ Ω0(gE )
C−→ Ω1(gE )

dσ−→ Ω2,+(gE )→ 0

• We have in particular that

T[A]MASD = H1
A =:

Ker(dσ)

Im(C )

• The index of the Atiyah-Hitchin-Singer (AHS) complex is given

by

ind = dimH1
A − dimH0

A − dimH2
A
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or alternatively

ind = dimH1
A − dim Ker(C )− dim Coker(dσ)

as H0
A = Ker (C ) and H2

A = Coker (dσ). The index is often called
the virtual dimension of MASD , and coincides with the dimension
of the moduli space in the case where A is an irreducible
connection (Ker(∇A) = 0) and H2

A = 0.

• In this case, A is called a regular connection. The AHS index can
be computed for any group G via the Atiyah-Singer index theorem.
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• Important: MASD turns out to be a smooth manifold of
dimension 5 away from the singular points for a generic metric on
the base manifold.

• The idea of the proof is to construct a slice of the G-action of
the space of connections away from the reducible connections, this
will show that the orbit space is a manifold, however it is not
necessarily the case that it is a manifold for arbitrary choice of
metric.

• It turns out to in fact be true that MASD is a smooth manifold
for a generic metric, which is the content of the Freed-Uhlenbeck
generic metrics theorem, more on this can be found at:
https://www.math.stonybrook.edu/ milivojevic/instantons-and-
four-manifolds.pdf or in Instantons and Four
Manifolds.


