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Homology and Cohomology



Some Essential Facts

Poincare duality:

Theorem
Let X be a closed orientable 4-manifold, then we have an

isomorphism

PD : H i (X ;Z)
∼=−−−−→ H2−i (X ;Z).
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Some Essential Facts

Theorem
Let X be a simply-connected closed oriented 4-manifold, then

H2(X ,Z) is a free abelian group.
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Some Essential Facts

Proof.
This is a simple computation: We have:

H2(X ;Z) ∼= H2(X ;Z).

And also

H1(X ;Z) = Ab(π1(X )) = 0.

Thus by the universal coefficient theorem:

H2(X ,Z) = Ext1
Z(H1(X ;Z),Z)⊕ Hom(H2(X ;Z),Z)

= Hom(H2(X ;Z),Z).

Since H2(X ;Z) is fin. generated we have that Hom(H2(X ;Z),Z) is

free.
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Some Essential Facts

Can we see H2(X ;Z) ∼= H2(X ;Z) geometrically?

� For α ∈ H2(X ;Z) choose a complex line bundle L s.t.

c1(L) = α.

� Take a generic section σ

� We have an embedded surface Σα = σ−1(0)

� [Σα] = PD(α)
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Some Essential Facts

Can we see H2(X ;Z) ∼= H2(X ;Z) geometrically?

� For α ∈ H2(X ;Z) choose a complex line bundle L s.t.

c1(L) = α.

� Take a generic section σ

� We have an embedded surface Σα = σ−1(0)

� [Σα] = PD(α)

Note: Different construction using Eilenberg-MacLean spaces in

appendix of notes.
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Some Essential Facts

Next we will define an additional structures on H2(X ;Z).
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Intersection Forms



The Intersection Product

Cap Product:

_: Hp(X ;Z)× Hq(X ;Z)→ Hp−q(X ;Z).

Kronecker Pairing:

〈·, ·〉 : Hp(X ;G )× Hp(X ;G )→ G .

Cup product:

^: H i (X ;Z)× H j(X ;Z)→ H j+i (X ;Z).
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The Intersection Product

Now we have everything we need to make this definition:

Definition
Let X be a closed oriented topological 4-manifold. Then the

bilinear map

Q : H2(X ;Z)× H2(X ;Z) −−−−→ Z

given by

(α, β) 7→ 〈α ^ β, [X ]〉

is called (cohomology) intersection form of X .
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The Intersection Product

This is a very algebraic definition. For a smooth four manifold we

can interpret it in a more geometric way:
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The Smooth Intersection Product

Theorem
Let X be closed oriented simply-connected smooth 4-manifold. Let

α, β ∈ H2(X ;Z) and [Σα], [Σβ] ∈ H2(X ;Z) be their duals. There

are closed 2-forms ωα and ωβ representing α, β such that

Q(α, β) = 〈α ^ β, [X ]〉 = Σα · Σβ =

∫
X
ωα ∧ ωβ.

Since H2(X ;Z) is torsion free we can go forth and back be-

tween integral and de Rahm cohomology.
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The Smooth Intersection Product

Proof.
First we notice:

Q(α, β) = 〈α ^ β, [X ]〉 = 〈α, [X ] _ β〉
= 〈α,PD(β)〉 = 〈α, [Σβ]〉

Switching to de Rahm cohomology:

〈α, [Σα]〉 =

∫
Σβ

ωα
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The Smooth Intersection Product

Proof.
Now we have to show: ∫

Σβ

ωα = Σα · Σβ

Choose Σα t Σβ. Then we have a finite number of intersection

points. Since ωα vanishes away from Σα it is enough to compute

the integral at the intersection points.

11



The Smooth Intersection Product

Proof.
Around any intersection point choose U and oriented local

coordinates x1, x2, x3, x4 s.t.

U ∩ Σα = {x3 = x4 = 0} U ∩ Σβ = {x1 = x2 = 0}

and U ∩ Σα is oriented by dx1 ∧ dx2. Then

ωα = f (x3, x4)dx3 ∧ dx4

for a bump function f : R2 → R. Then∫
U∩Σβ

f (x3, x4)dx3 ∧ dx4 = ±1

depending on orientation.
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The Smooth Intersection Product

Proof.
By summing over all intersection points we get:∫

Σβ

ωα = Σα · Σβ.

For the last equality we have:

〈ω, [N]〉 =

∫
N
ω

[ω1 ∧ ω2] = [ω1] ^ [ω2]

Giving us

Q(α, β) =

∫
X
ωα ∧ ωβ.
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Unimodularity

Theorem
Let X be closed oriented simply-connected 4-manifold. Then QX is

unimodular, i.e. a→ Q(·, a) and b → Q(b, ·) are isomorphisms.
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Unimodularity

Proof.
By the universal coefficient theorem

H2(X ;Z)→ Hom(H2(X ;Z))

α 7→ 〈α, ·〉

is an isomorphism. This suffices, as

Q(α, β) = 〈α,PD(β)〉

and Q is symmetric.
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Example

Example
Consider

X = S2 × S2.

Then

H2(X ;Z) = 〈PD−1([{pt} × S2]),PD−1([{pt} × S2])〉.

And

Q ∼=

(
0 1

1 0

)
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In the Presence of Torsion

What happens if H2(X ;Z) is not free?

Let α ∈ H2(X ;Z) s.t.

n · α = 0, then

nQ(α, β) = Q(n · α, β) = Q(0, β) = 0.

So we can define

Q̃ :

(
H2(X ;Z)�Ext1

Z(H1(X ;Z),Z)

)2

−−−−→ Z

and use the arguments there.
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Intersection Form Invariants

� Parity:

If Q(α, α) ∈ 2Z∀α ∈ H2(X ;Z) we call Q even. Otherwise it

is called odd.

� Definiteness:

If Q(α, α) > 0∀α ∈ H2(X ;Z) we call Q positive-definite. If

Q(α, α) < 0∀α ∈ H2(X ;Z) we call Q negative-definite.

Otherwise it is called indefinite.

� Rank:

The second Betti number b2(X ) is called the rank of Q.

� Signature:

Over R Q has b+
2 positive and b−2 negative eigenvalues. We

call

signQ = b+
2 − b−2

the signature of Q.
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Hasse-Minkowski Classification

Theorem (Hasse-Minkowski)
Let H be a free Z module. If Q : H × H → Z is an odd indefinite

bilinear form then

Q ∼= l(1)⊕m(−1)

with l ,m ∈ N0. If Q : H × H → Z is an even indefinite bilinear

form then

Q ∼= l

(
0 1

1 0

)
⊕mE8

with l ,m ∈ N0.
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Hasse-Minkowski Classification

E8 =



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 −1

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0

0 0 0 0 −1 0 0 2
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Hasse-Minkowski Classification

What about definite forms?

� No easy classification

� Many exotic forms

� Number of unique even definite forms of some ranks:

Rank 8 16 24

# 1 2 5
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Diagonalizability

Warning: Any intersection form is diagonalizable over Q but

might not be over Z.

Exercise
Show that (

0 1

1 0

)
is not diagonalizable over Z.
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Homotopy Type



Milnor’s Theorem

We will now find a direct link between homotopy type and

intersection form of four manifolds.
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Milnor’s Theorem

Theorem (Milnor (1958))
The oriented homotopy type of a simply-connected closed oriented

4-manifold is determined by its intersection form.
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Milnor’s Theorem

Proof.
Define X ′ = X \ B4. Then

Hk(X ′;Z) =

H2(X ) k = 2

0 k = 1, 3, 4
.

By Hurewicz’s theorem:

f : S2 ∨ ... ∨ S2 → X ′

represents π2(X ) ∼= H2(X ′;Z). This induces an isomorphism

Hk(S2 ∨ ... ∨ S2;Z) ∼= Hk(X ′;Z)

for every k .
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Milnor’s Theorem

Proof.
Thus

X ' (S2 ∨ ... ∨ S2) ∪h e4

with [h] ∈ π3(S2 ∨ ... ∨ S2). Left to show: [h] depends only on Q.

Complete proof can be found in: [1, p.141ff]
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Milnor’s Theorem

Proof.
Sketch:

� [X ] ∈ H4(X ;Z) corresponds to

[e4] ∈ H4((S2 ∨ ... ∨ S2) ∪h e4;Z)

� S2 ∨ · · · ∨ S2 = CP1 ∨ · · · ∨ CP1 ⊂ CP∞ × · · · × CP∞

� Long exact sequence on relative homotopy groups:

π4(×mCP∞) −−−−→ π4(×mCP∞,∨mS2) −−−−→ π3(∨mS2)

−−−−→ π3(×mCP∞)

� CP∞ is K (Z, 2) =⇒

π3(∨mS2) ∼= π4(×mCP∞,∨mS2) ∼= H4(×mCP∞,∨mS2)
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Milnor’s Theorem

Proof.

� π3(∨mS2) ∼= π4(×mCP∞,∨mS2) ∼= H4(×mCP∞,∨mS2)

� Oriented manifold: [h] is determined by αk(h∗([e4])) for

α1, ..., αl basis of H4(×mCP∞).

� Basis is given by cupping PD−1([S2
i ]). Since

H2(×mCP∞) ∼= H2(∨mS2) ∼= H2(X ′;Z) = H2(X ;Z)

these classes can be seen in X .

� We are done since 〈PD−1([S2
i ]) ^ PD−1([S2

j ]), h∗([e4])〉 =

〈ωi , ωj , [X ]〉 = Q(ωi , ωj)
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Milnor’s Theorem

Exercise
Fill in the gaps in the proof sketch.
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The “Big” Structure Theorems



Freedman’s Theorem

Theorem (Freedman)
Let Q be an quadratic (i.e. unimodular symmetric bilinear) form

over Z, then there exists a topological 4-manifold M s.t. Q is (up

to isomorphism) the intersection form of M. If Q is even, then M

is unique.
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Rohlin’s Theorem

Theorem (Rohlin)
Let X be a simply-connected closed oriented smooth 4-manifold

with w2(X ) = 0. Then

signQX ∈ 16Z.

The original proof by Rohlin is very involved. Simpler proof due to

Atiyah and Singer using the Atiyah-Singer index theorem.

Reference: [2, Theorem 29.9]
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Rohlin’s Theorem

Corollary
Let X be a simply-connected closed oriented smooth 4-manifold

with even intersection form QX . Then

signQX ∈ 16Z.
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Rohlin’s Theorem

Corollary
There exists a simply-connected closed 4-manifold E8 with

intersection form E8 that has no smooth structure.

Proof.
E8 is a negative definite even form with signature -8. The

existence is given by Freedman’s theorem.
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Donaldson’s Theorem

Theorem (Donaldson)
Let X be a simply-connected closed smooth 4-manifold. If Q is

definite, Q is diagonalizable over Z.
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Donaldson’s Theorem

Corollary
Let X be a simply-connected closed smooth 4-manifold. If Q is

positive-definite then

X ∼= #kCP2

as topological manifolds.
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Whitney Disks and the Failure of

the h-Cobordism Principle in

Dimension Four



h-Cobordisms

Definition
Let M and N be closed simply-connected manifolds and W be a

cobordism between them (i.e. ∂W = M ∪ N̄). If the inclusions

M →W and N →W are homotopy equivalences, then M and N

are called h-cobordant.
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h-Cobordisms

Theorem (Wall)
Two simply-connected four-manifolds with isomorphic intersection

form are h-cobordant.
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The h-Cobordism Theorem

Theorem (Smale (1961))
Let M and N be cobordant smooth n-manifolds with n > 4. Then

M and N are diffeomorphic.

Warning: This theorem only holds for n ≥ 5.
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The Culprit

Why does the (smooth) h-cobordism principle fail in dimension

four?

� Short answer:

The statement

2 + 2 < 4

is optimistic but sadly wrong!

� That is not so helpful, we are looking for a longer answer.
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The Culprit

Strategy of the proof in higher dimensions:

� Goal: Show that W ∼= M × [0, 1]

� Choose a Morse function f : W → [0, 1] with f (M) = 0 and

f (N) = 1

� If f has no critical values we are done!

� Idea: Modify f s.t. all critical values disappear
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The Culprit

Figure 1: Cancelling an index 0 critical point with an index 1 critical

point. From [3]

36



The Culprit

Removing critical points of index 0, 1, 4, 5 works in dimension four.

But: Canceling critical points of index 3 and 2 does not work (with

this method).
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The Culprit

� Suppose f has two critical points: p of index 2 and q of index

3

� Let p and q be separated by Z1/2 = f −1( 1
2 )

� Fact: p and q can be canceled if there is exactly one flow line

from p to q
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The Culprit

We define

S+ = {x ∈ Z1/2 | x flows to p as t →∞}
S− = {x ∈ Z1/2 | x flows to q as t → −∞}.

These are embedded spheres. If S− t S+ is a single point we can

glue the flow lines and are done.
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The Culprit

Figure 2: Analogy in dimension three showing S+ and S− intersection

transversely and the resulting flow line. From [3]

40



The Culprit

The algebraic intersection number is 1 because W is h-cobordism.

Problem: The geometric intersection number might not agree! We

need an isotopy to correct this.

41



The Whitney Disk

Usual procedure:

� Choose intersection points with opposite signs, e.g. x and y

� Find path α ⊂ S+ and β ⊂ S− joining them

� W simply-connected =⇒ α ∪ β inessential

� There is a disk D ⊂W with ∂D = α ∪ β
� If the disk lies outside S+ and S− we get an isotopy removing

the intersection points

42



The Culprit

Figure 3: Removing intersection points in pairs. From [3]
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The Whitney Disk

In dimension n ≥ 5:

� D is generically embedded

� D generically does not intersect S+ and S− in any interior

points

44



The Whitney Disk

In dimension n ≥ 5:

� D is generically embedded

� D generically does not intersect S+ and S− in any interior

points

In dimension four on the other hand both is not true! The

intersection form makes this clear.
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Final Note

With the existence of non-smooth manifolds one the one hand and

the failure of the h-cobordism on the other hand, we see that the

topology and geometry of four-manifolds is quite unique.

45



Thank you for your attention!
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