## The Topology of 4 - Manifolds

Adrian Dawid
January 12, 2021

Institut für Mathematik, Humboldt Universität zu Berlin

## Table of Contents

1. Homology and Cohomology
2. Intersection Forms
3. Homotopy Type
4. The "Big" Structure Theorems
5. Whitney Disks and the Failure of the h-Cobordism Principle in Dimension Four

## Homology and Cohomology

## Some Essential Facts

Poincare duality:
Theorem
Let $X$ be a closed orientable 4-manifold, then we have an isomorphism

$$
P D: H^{i}(X ; \mathbb{Z}) \xrightarrow{\cong} H_{2-i}(X ; \mathbb{Z})
$$

## Some Essential Facts

Theorem
Let $X$ be a simply-connected closed oriented 4-manifold, then $H_{2}(X, \mathbb{Z})$ is a free abelian group.

## Some Essential Facts

## Proof.

This is a simple computation: We have:

$$
H_{2}(X ; \mathbb{Z}) \cong H^{2}(X ; \mathbb{Z})
$$

And also

$$
H_{1}(X ; \mathbb{Z})=\operatorname{Ab}\left(\pi_{1}(X)\right)=0
$$

Thus by the universal coefficient theorem:

$$
\begin{aligned}
H^{2}(X, \mathbb{Z}) & =\operatorname{Ext}_{\mathbb{Z}}^{1}\left(H_{1}(X ; \mathbb{Z}), \mathbb{Z}\right) \oplus \operatorname{Hom}\left(H_{2}(X ; \mathbb{Z}), \mathbb{Z}\right) \\
& =\operatorname{Hom}\left(H_{2}(X ; \mathbb{Z}), \mathbb{Z}\right)
\end{aligned}
$$

Since $H_{2}(X ; \mathbb{Z})$ is fin. generated we have that $\operatorname{Hom}\left(H_{2}(X ; \mathbb{Z}), \mathbb{Z}\right)$ is free.

## Some Essential Facts

Can we see $H^{2}(X ; \mathbb{Z}) \cong H_{2}(X ; \mathbb{Z})$ geometrically?

## Some Essential Facts

Can we see $H^{2}(X ; \mathbb{Z}) \cong H_{2}(X ; \mathbb{Z})$ geometrically?

- For $\alpha \in H^{2}(X ; \mathbb{Z})$ choose a complex line bundle $L$ s.t. $c_{1}(L)=\alpha$.


## Some Essential Facts

Can we see $H^{2}(X ; \mathbb{Z}) \cong H_{2}(X ; \mathbb{Z})$ geometrically?

- For $\alpha \in H^{2}(X ; \mathbb{Z})$ choose a complex line bundle $L$ s.t. $c_{1}(L)=\alpha$.
- Take a generic section $\sigma$


## Some Essential Facts

Can we see $H^{2}(X ; \mathbb{Z}) \cong H_{2}(X ; \mathbb{Z})$ geometrically?

- For $\alpha \in H^{2}(X ; \mathbb{Z})$ choose a complex line bundle $L$ s.t. $c_{1}(L)=\alpha$.
- Take a generic section $\sigma$
- We have an embedded surface $\Sigma_{\alpha}=\sigma^{-1}(0)$


## Some Essential Facts

Can we see $H^{2}(X ; \mathbb{Z}) \cong H_{2}(X ; \mathbb{Z})$ geometrically?

- For $\alpha \in H^{2}(X ; \mathbb{Z})$ choose a complex line bundle $L$ s.t. $c_{1}(L)=\alpha$.
- Take a generic section $\sigma$
- We have an embedded surface $\Sigma_{\alpha}=\sigma^{-1}(0)$
- $\left[\Sigma_{\alpha}\right]=P D(\alpha)$

Note: Different construction using Eilenberg-MacLean spaces in appendix of notes.

## Some Essential Facts

Next we will define an additional structures on $H^{2}(X ; \mathbb{Z})$.

## Intersection Forms

## The Intersection Product

Cap Product:

$$
\frown: H_{p}(X ; \mathbb{Z}) \times H^{q}(X ; \mathbb{Z}) \rightarrow H_{p-q}(X ; \mathbb{Z})
$$

Kronecker Pairing:

$$
\langle\cdot, \cdot\rangle: H^{p}(X ; G) \times H_{p}(X ; G) \rightarrow G .
$$

Cup product:

$$
\smile: H^{i}(X ; \mathbb{Z}) \times H^{j}(X ; \mathbb{Z}) \rightarrow H^{j+i}(X ; \mathbb{Z})
$$

## The Intersection Product

Now we have everything we need to make this definition:
Definition
Let $X$ be a closed oriented topological 4-manifold. Then the bilinear map

$$
Q: H^{2}(X ; \mathbb{Z}) \times H^{2}(X ; \mathbb{Z}) \longrightarrow \mathbb{Z}
$$

given by

$$
(\alpha, \beta) \mapsto\langle\alpha \smile \beta,[X]\rangle
$$

is called (cohomology) intersection form of $X$.

## The Intersection Product

This is a very algebraic definition. For a smooth four manifold we can interpret it in a more geometric way:

## The Smooth Intersection Product

## Theorem

Let $X$ be closed oriented simply-connected smooth 4-manifold. Let $\alpha, \beta \in H^{2}(X ; \mathbb{Z})$ and $\left[\Sigma_{\alpha}\right],\left[\Sigma_{\beta}\right] \in H_{2}(X ; \mathbb{Z})$ be their duals. There are closed 2 -forms $\omega_{\alpha}$ and $\omega_{\beta}$ representing $\alpha, \beta$ such that

$$
Q(\alpha, \beta)=\langle\alpha \smile \beta,[X]\rangle=\Sigma_{\alpha} \cdot \Sigma_{\beta}=\int_{X} \omega_{\alpha} \wedge \omega_{\beta}
$$

## The Smooth Intersection Product

## Theorem

Let $X$ be closed oriented simply-connected smooth 4-manifold. Let $\alpha, \beta \in H^{2}(X ; \mathbb{Z})$ and $\left[\Sigma_{\alpha}\right],\left[\Sigma_{\beta}\right] \in H_{2}(X ; \mathbb{Z})$ be their duals. There are closed 2 -forms $\omega_{\alpha}$ and $\omega_{\beta}$ representing $\alpha, \beta$ such that

$$
Q(\alpha, \beta)=\langle\alpha \smile \beta,[X]\rangle=\Sigma_{\alpha} \cdot \Sigma_{\beta}=\int_{X} \omega_{\alpha} \wedge \omega_{\beta}
$$

Since $H^{2}(X ; \mathbb{Z})$ is torsion free we can go forth and back between integral and de Rahm cohomology.

## The Smooth Intersection Product

## Proof.

First we notice:

$$
\begin{aligned}
Q(\alpha, \beta) & =\langle\alpha \smile \beta,[X]\rangle=\langle\alpha,[X] \frown \beta\rangle \\
& =\langle\alpha, P D(\beta)\rangle=\left\langle\alpha,\left[\Sigma_{\beta}\right]\right\rangle
\end{aligned}
$$

Switching to de Rahm cohomology:

$$
\left\langle\alpha,\left[\Sigma_{\alpha}\right]\right\rangle=\int_{\Sigma_{\beta}} \omega_{\alpha}
$$

## The Smooth Intersection Product

## Proof.

Now we have to show:

$$
\int_{\Sigma_{\beta}} \omega_{\alpha}=\Sigma_{\alpha} \cdot \Sigma_{\beta}
$$

Choose $\Sigma_{\alpha} \pitchfork \Sigma_{\beta}$. Then we have a finite number of intersection points. Since $\omega_{\alpha}$ vanishes away from $\Sigma_{\alpha}$ it is enough to compute the integral at the intersection points.

## The Smooth Intersection Product

## Proof.

Around any intersection point choose $\mathfrak{U}$ and oriented local coordinates $x_{1}, x_{2}, x_{3}, x_{4}$ s.t.

$$
\mathfrak{U} \cap \Sigma_{\alpha}=\left\{x_{3}=x_{4}=0\right\} \quad \mathfrak{U} \cap \Sigma_{\beta}=\left\{x_{1}=x_{2}=0\right\}
$$

and $\mathfrak{U} \cap \Sigma_{\alpha}$ is oriented by $d x_{1} \wedge d x_{2}$. Then

$$
\omega_{\alpha}=f\left(x_{3}, x_{4}\right) d x_{3} \wedge d x_{4}
$$

for a bump function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Then

$$
\int_{\mathfrak{U} \cap \Sigma_{\beta}} f\left(x_{3}, x_{4}\right) d x_{3} \wedge d x_{4}= \pm 1
$$

depending on orientation.

## The Smooth Intersection Product

## Proof.

By summing over all intersection points we get:

$$
\int_{\Sigma_{\beta}} \omega_{\alpha}=\Sigma_{\alpha} \cdot \Sigma_{\beta} .
$$

For the last equality we have:

$$
\begin{aligned}
\langle\omega,[N]\rangle & =\int_{N} \omega \\
{\left[\omega_{1} \wedge \omega_{2}\right] } & =\left[\omega_{1}\right] \smile\left[\omega_{2}\right]
\end{aligned}
$$

Giving us

$$
Q(\alpha, \beta)=\int_{X} \omega_{\alpha} \wedge \omega_{\beta}
$$

## Unimodularity

Theorem
Let $X$ be closed oriented simply-connected 4-manifold. Then $Q_{X}$ is unimodular, i.e. $a \rightarrow Q(\cdot, a)$ and $b \rightarrow Q(b, \cdot)$ are isomorphisms.

## Unimodularity

## Proof.

By the universal coefficient theorem

$$
\begin{aligned}
H^{2}(X ; \mathbb{Z}) & \rightarrow \operatorname{Hom}\left(H_{2}(X ; \mathbb{Z})\right) \\
\alpha & \mapsto\langle\alpha, \cdot\rangle
\end{aligned}
$$

is an isomorphism. This suffices, as

$$
Q(\alpha, \beta)=\langle\alpha, P D(\beta)\rangle
$$

and $Q$ is symmetric.

## Example

## Example

Consider

$$
X=S^{2} \times S^{2}
$$

Then

$$
H^{2}(X ; \mathbb{Z})=\left\langle P D^{-1}\left(\left[\{\mathrm{pt}\} \times S^{2}\right]\right), P D^{-1}\left(\left[\{\mathrm{pt}\} \times S^{2}\right]\right)\right\rangle
$$

And

$$
Q \cong\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

## In the Presence of Torsion

What happens if $H^{2}(X ; \mathbb{Z})$ is not free?

## In the Presence of Torsion

What happens if $H^{2}(X ; \mathbb{Z})$ is not free? Let $\alpha \in H^{2}(X ; \mathbb{Z})$ s.t. $n \cdot \alpha=0$, then

$$
n Q(\alpha, \beta)=Q(n \cdot \alpha, \beta)=Q(0, \beta)=0 .
$$

## In the Presence of Torsion

What happens if $H^{2}(X ; \mathbb{Z})$ is not free? Let $\alpha \in H^{2}(X ; \mathbb{Z})$ s.t. $n \cdot \alpha=0$, then

$$
n Q(\alpha, \beta)=Q(n \cdot \alpha, \beta)=Q(0, \beta)=0 .
$$

So we can define

$$
\tilde{Q}:\left(H^{2}(X ; \mathbb{Z}) / \operatorname{Ext}_{\mathbb{Z}}^{1}\left(H_{1}(X ; \mathbb{Z}), \mathbb{Z}\right)\right)^{2} \longrightarrow \mathbb{Z}
$$

and use the arguments there.

## Intersection Form Invariants

- Parity:

If $Q(\alpha, \alpha) \in 2 \mathbb{Z} \forall \alpha \in H^{2}(X ; \mathbb{Z})$ we call $Q$ even. Otherwise it is called odd.

## Intersection Form Invariants

- Parity:

If $Q(\alpha, \alpha) \in 2 \mathbb{Z} \forall \alpha \in H^{2}(X ; \mathbb{Z})$ we call $Q$ even. Otherwise it is called odd.

- Definiteness:

If $Q(\alpha, \alpha)>0 \forall \alpha \in H^{2}(X ; \mathbb{Z})$ we call $Q$ positive-definite. If $Q(\alpha, \alpha)<0 \forall \alpha \in H^{2}(X ; \mathbb{Z})$ we call $Q$ negative-definite. Otherwise it is called indefinite.

## Intersection Form Invariants

- Parity:

If $Q(\alpha, \alpha) \in 2 \mathbb{Z} \forall \alpha \in H^{2}(X ; \mathbb{Z})$ we call $Q$ even. Otherwise it is called odd.

- Definiteness:

If $Q(\alpha, \alpha)>0 \forall \alpha \in H^{2}(X ; \mathbb{Z})$ we call $Q$ positive-definite. If $Q(\alpha, \alpha)<0 \forall \alpha \in H^{2}(X ; \mathbb{Z})$ we call $Q$ negative-definite. Otherwise it is called indefinite.

- Rank:

The second Betti number $b_{2}(X)$ is called the rank of $Q$.

## Intersection Form Invariants

- Parity:

If $Q(\alpha, \alpha) \in 2 \mathbb{Z} \forall \alpha \in H^{2}(X ; \mathbb{Z})$ we call $Q$ even. Otherwise it is called odd.

- Definiteness:

If $Q(\alpha, \alpha)>0 \forall \alpha \in H^{2}(X ; \mathbb{Z})$ we call $Q$ positive-definite. If $Q(\alpha, \alpha)<0 \forall \alpha \in H^{2}(X ; \mathbb{Z})$ we call $Q$ negative-definite.
Otherwise it is called indefinite.

- Rank:

The second Betti number $b_{2}(X)$ is called the rank of $Q$.

- Signature:

Over $\mathbb{R} Q$ has $b_{2}^{+}$positive and $b_{2}^{-}$negative eigenvalues. We call

$$
\operatorname{sign} Q=b_{2}^{+}-b_{2}^{-}
$$

the signature of $Q$.

## Hasse-Minkowski Classification

Theorem (Hasse-Minkowski)
Let $H$ be a free $\mathbb{Z}$ module. If $Q: H \times H \rightarrow \mathbb{Z}$ is an odd indefinite bilinear form then

$$
Q \cong I(1) \oplus m(-1)
$$

with I, $m \in \mathbb{N}_{0}$. If $Q: H \times H \rightarrow \mathbb{Z}$ is an even indefinite bilinear form then

$$
Q \cong I\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \oplus m E_{8}
$$

with $I, m \in \mathbb{N}_{0}$.

## Hasse-Minkowski Classification

$$
E_{8}=\left(\begin{array}{cccccccc}
2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 2
\end{array}\right)
$$

## Hasse-Minkowski Classification

What about definite forms?

- No easy classification


## Hasse-Minkowski Classification

What about definite forms?

- No easy classification
- Many exotic forms


## Hasse-Minkowski Classification

What about definite forms?

- No easy classification
- Many exotic forms
- Number of unique even definite forms of some ranks:

| Rank | 8 | 16 | 24 |
| :---: | :---: | :---: | :---: |
| $\#$ | 1 | 2 | 5 |

## Diagonalizability

Warning: Any intersection form is diagonalizable over $\mathbb{Q}$ but might not be over $\mathbb{Z}$.

## Exercise

Show that

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

is not diagonalizable over $\mathbb{Z}$.

Homotopy Type

## Milnor's Theorem

We will now find a direct link between homotopy type and intersection form of four manifolds.

## Milnor's Theorem

Theorem (Milnor (1958))
The oriented homotopy type of a simply-connected closed oriented 4 -manifold is determined by its intersection form.

## Milnor's Theorem

## Proof.

Define $X^{\prime}=X \backslash B^{4}$. Then

$$
H_{k}\left(X^{\prime} ; \mathbb{Z}\right)= \begin{cases}H_{2}(X) & k=2 \\ 0 & k=1,3,4\end{cases}
$$

By Hurewicz's theorem:

$$
f: S^{2} \vee \ldots \vee S^{2} \rightarrow X^{\prime}
$$

represents $\pi_{2}(X) \cong H_{2}\left(X^{\prime} ; \mathbb{Z}\right)$. This induces an isomorphism

$$
H_{k}\left(S^{2} \vee \ldots \vee S^{2} ; \mathbb{Z}\right) \cong H_{k}\left(X^{\prime} ; \mathbb{Z}\right)
$$

for every $k$.

## Milnor's Theorem

Proof.
Thus

$$
X \simeq\left(S^{2} \vee \ldots \vee S^{2}\right) \cup_{h} e^{4}
$$

with $[h] \in \pi_{3}\left(S^{2} \vee \ldots \vee S^{2}\right)$. Left to show: $[h]$ depends only on $Q$.
Complete proof can be found in: [1, p.141ff]

## Milnor's Theorem

## Proof. <br> Sketch:

- $[X] \in H_{4}(X ; \mathbb{Z})$ corresponds to

$$
\left[e^{4}\right] \in H_{4}\left(\left(S^{2} \vee \ldots \vee S^{2}\right) \cup_{h} e^{4} ; \mathbb{Z}\right)
$$

## Milnor's Theorem

## Proof. <br> Sketch:

- $[X] \in H_{4}(X ; \mathbb{Z})$ corresponds to $\left[e^{4}\right] \in H_{4}\left(\left(S^{2} \vee \ldots \vee S^{2}\right) \cup_{h} e^{4} ; \mathbb{Z}\right)$
- $S^{2} \vee \cdots \vee S^{2}=\mathbb{C P}^{1} \vee \cdots \vee \mathbb{C P}^{1} \subset \mathbb{C P}^{\infty} \times \cdots \times \mathbb{C P}^{\infty}$


## Milnor's Theorem

## Proof. <br> Sketch:

- $[X] \in H_{4}(X ; \mathbb{Z})$ corresponds to

$$
\left[e^{4}\right] \in H_{4}\left(\left(S^{2} \vee \ldots \vee S^{2}\right) \cup_{h} e^{4} ; \mathbb{Z}\right)
$$

- $S^{2} \vee \cdots \vee S^{2}=\mathbb{C P}^{1} \vee \cdots \vee \mathbb{C P}^{1} \subset \mathbb{C P}^{\infty} \times \cdots \times \mathbb{C P}^{\infty}$
- Long exact sequence on relative homotopy groups:

$$
\begin{aligned}
\pi_{4}\left(\times_{m} \mathbb{C} \mathbb{P}^{\infty}\right) & \longrightarrow \pi_{4}\left(\times_{m} \mathbb{C P}^{\infty}, \vee_{m} S^{2}\right) \longrightarrow \pi_{3}\left(\vee_{m} S^{2}\right) \\
& \longrightarrow \pi_{3}\left(\times_{m} \mathbb{C} \mathbb{P}^{\infty}\right)
\end{aligned}
$$

## Milnor's Theorem

## Proof. <br> Sketch:

- $[X] \in H_{4}(X ; \mathbb{Z})$ corresponds to

$$
\left[e^{4}\right] \in H_{4}\left(\left(S^{2} \vee \ldots \vee S^{2}\right) \cup_{h} e^{4} ; \mathbb{Z}\right)
$$

- $S^{2} \vee \cdots \vee S^{2}=\mathbb{C P}^{1} \vee \cdots \vee \mathbb{C P}^{1} \subset \mathbb{C P}^{\infty} \times \cdots \times \mathbb{C P}^{\infty}$
- Long exact sequence on relative homotopy groups:

$$
\begin{aligned}
\pi_{4}\left(\times_{m} \mathbb{C} \mathbb{P}^{\infty}\right) & \longrightarrow \pi_{4}\left(\times_{m} \mathbb{C P}^{\infty}, \vee_{m} S^{2}\right) \longrightarrow \pi_{3}\left(\vee_{m} S^{2}\right) \\
& \longrightarrow \pi_{3}\left(\times_{m} \mathbb{C} \mathbb{P}^{\infty}\right)
\end{aligned}
$$

- $\mathbb{C P}^{\infty}$ is $K(\mathbb{Z}, 2) \Longrightarrow$

$$
\pi_{3}\left(\vee_{m} S^{2}\right) \cong \pi_{4}\left(\times_{m} \mathbb{C} \mathbb{P}^{\infty}, \vee_{m} S^{2}\right) \cong H_{4}\left(\times_{m} \mathbb{C P}^{\infty}, \vee_{m} S^{2}\right)
$$

## Milnor's Theorem

## Proof.

- $\pi_{3}\left(\vee_{m} S^{2}\right) \cong \pi_{4}\left(\times_{m} \mathbb{C} \mathbb{P}^{\infty}, \vee_{m} S^{2}\right) \cong H_{4}\left(\times_{m} \mathbb{C} \mathbb{P}^{\infty}, \vee_{m} S^{2}\right)$
- Oriented manifold: $[h]$ is determined by $\alpha_{k}\left(h_{*}\left(\left[e^{4}\right]\right)\right)$ for $\alpha_{1}, \ldots, \alpha_{l}$ basis of $H^{4}\left(\times_{m} \mathbb{C P} \mathbb{P}^{\infty}\right)$.


## Milnor's Theorem

## Proof.

- $\pi_{3}\left(\vee_{m} S^{2}\right) \cong \pi_{4}\left(\times_{m} \mathbb{C P}^{\infty}, \vee_{m} S^{2}\right) \cong H_{4}\left(\times_{m} \mathbb{C} \mathbb{P}^{\infty}, \vee_{m} S^{2}\right)$
- Oriented manifold: $[h]$ is determined by $\alpha_{k}\left(h_{*}\left(\left[e^{4}\right]\right)\right)$ for $\alpha_{1}, \ldots, \alpha_{l}$ basis of $H^{4}\left(\times_{m} \mathbb{C P} \mathbb{P}^{\infty}\right)$.
- Basis is given by cupping $P D^{-1}\left(\left[S_{i}^{2}\right]\right)$. Since

$$
H^{2}\left(\times_{m} \mathbb{C P}^{\infty}\right) \cong H^{2}\left(\vee_{m} S^{2}\right) \cong H^{2}\left(X^{\prime} ; \mathbb{Z}\right)=H^{2}(X ; \mathbb{Z})
$$

these classes can be seen in $X$.

## Milnor's Theorem

## Proof.

- $\pi_{3}\left(\vee_{m} S^{2}\right) \cong \pi_{4}\left(\times_{m} \mathbb{C P}^{\infty}, \vee_{m} S^{2}\right) \cong H_{4}\left(\times_{m} \mathbb{C P}^{\infty}, \vee_{m} S^{2}\right)$
- Oriented manifold: $[h]$ is determined by $\alpha_{k}\left(h_{*}\left(\left[e^{4}\right]\right)\right)$ for $\alpha_{1}, \ldots, \alpha_{\text {}}$ basis of $H^{4}\left(\times_{m} \mathbb{C} \mathbb{P}^{\infty}\right)$.
- Basis is given by cupping $P D^{-1}\left(\left[S_{i}^{2}\right]\right)$. Since

$$
H^{2}\left(\times_{m} \mathbb{C P}^{\infty}\right) \cong H^{2}\left(\vee_{m} S^{2}\right) \cong H^{2}\left(X^{\prime} ; \mathbb{Z}\right)=H^{2}(X ; \mathbb{Z})
$$

these classes can be seen in $X$.

- We are done since $\left\langle P D^{-1}\left(\left[S_{i}^{2}\right]\right) \smile P D^{-1}\left(\left[S_{j}^{2}\right]\right), h_{*}\left(\left[e^{4}\right]\right)\right\rangle=$ $\left\langle\omega_{i}, \omega_{j},[X]\right\rangle=Q\left(\omega_{i}, \omega_{j}\right)$


## Milnor's Theorem

## Exercise

Fill in the gaps in the proof sketch.

## The "Big" Structure Theorems

## Freedman's Theorem

Theorem (Freedman)
Let $Q$ be an quadratic (i.e. unimodular symmetric bilinear) form over $\mathbb{Z}$, then there exists a topological 4-manifold $M$ s.t. $Q$ is (up to isomorphism) the intersection form of $M$. If $Q$ is even, then $M$ is unique.

## Rohlin's Theorem

Theorem (Rohlin)
Let $X$ be a simply-connected closed oriented smooth 4-manifold with $w_{2}(X)=0$. Then

$$
\operatorname{sign} Q_{X} \in 16 \mathbb{Z}
$$

## Rohlin's Theorem

Theorem (Rohlin)
Let $X$ be a simply-connected closed oriented smooth 4-manifold with $w_{2}(X)=0$. Then

$$
\operatorname{sign} Q_{X} \in 16 \mathbb{Z}
$$

The original proof by Rohlin is very involved. Simpler proof due to Atiyah and Singer using the Atiyah-Singer index theorem. Reference: [2, Theorem 29.9]

## Rohlin's Theorem

## Corollary

Let $X$ be a simply-connected closed oriented smooth 4-manifold with even intersection form $Q_{X}$. Then
$\operatorname{sign} Q_{X} \in 16 \mathbb{Z}$.

## Rohlin's Theorem

## Corollary <br> There exists a simply-connected closed 4-manifold $E_{8}$ with intersection form $E_{8}$ that has no smooth structure.

## Rohlin's Theorem

## Corollary

There exists a simply-connected closed 4-manifold $E_{8}$ with intersection form $E_{8}$ that has no smooth structure.

## Proof.

$E_{8}$ is a negative definite even form with signature -8. The existence is given by Freedman's theorem.

## Donaldson's Theorem

Theorem (Donaldson)
Let $X$ be a simply-connected closed smooth 4-manifold. If $Q$ is definite, $Q$ is diagonalizable over $\mathbb{Z}$.

## Donaldson's Theorem

## Corollary

Let $X$ be a simply-connected closed smooth 4-manifold. If $Q$ is positive-definite then

$$
X \cong \#_{k} \mathbb{C P}^{2}
$$

as topological manifolds.

Whitney Disks and the Failure of the $h$-Cobordism Principle in
Dimension Four

## h-Cobordisms

## Definition

Let $M$ and $N$ be closed simply-connected manifolds and $W$ be a cobordism between them (i.e. $\partial W=M \cup \bar{N}$ ). If the inclusions $M \rightarrow W$ and $N \rightarrow W$ are homotopy equivalences, then $M$ and $N$ are called $h$-cobordant.

## h-Cobordisms

Theorem (Wall)
Two simply-connected four-manifolds with isomorphic intersection form are h-cobordant.

## The h-Cobordism Theorem

Theorem (Smale (1961))
Let $M$ and $N$ be cobordant smooth n-manifolds with $n>4$. Then $M$ and $N$ are diffeomorphic.

Warning: This theorem only holds for $n \geq 5$.

## The Culprit

Why does the (smooth) h-cobordism principle fail in dimension four?

## The Culprit

Why does the (smooth) h-cobordism principle fail in dimension four?

- Short answer:

The statement

$$
2+2<4
$$

is optimistic but sadly wrong!

## The Culprit

Why does the (smooth) h-cobordism principle fail in dimension four?

- Short answer:

The statement

$$
2+2<4
$$

is optimistic but sadly wrong!

- That is not so helpful, we are looking for a longer answer.


## The Culprit

Strategy of the proof in higher dimensions:

- Goal: Show that $W \cong M \times[0,1]$


## The Culprit

Strategy of the proof in higher dimensions:

- Goal: Show that $W \cong M \times[0,1]$
- Choose a Morse function $f: W \rightarrow[0,1]$ with $f(M)=0$ and $f(N)=1$


## The Culprit

Strategy of the proof in higher dimensions:

- Goal: Show that $W \cong M \times[0,1]$
- Choose a Morse function $f: W \rightarrow[0,1]$ with $f(M)=0$ and $f(N)=1$
- If $f$ has no critical values we are done!


## The Culprit

Strategy of the proof in higher dimensions:

- Goal: Show that $W \cong M \times[0,1]$
- Choose a Morse function $f: W \rightarrow[0,1]$ with $f(M)=0$ and $f(N)=1$
- If $f$ has no critical values we are done!
- Idea: Modify $f$ s.t. all critical values disappear


## The Culprit



Fig. 4
Figure 1: Cancelling an index 0 critical point with an index 1 critical point. From [3]

## The Culprit

Removing critical points of index $0,1,4,5$ works in dimension four. But: Canceling critical points of index 3 and 2 does not work (with this method).

## The Culprit

- Suppose $f$ has two critical points: $p$ of index 2 and $q$ of index 3


## The Culprit

- Suppose $f$ has two critical points: $p$ of index 2 and $q$ of index 3
- Let $p$ and $q$ be separated by $Z_{1 / 2}=f^{-1}\left(\frac{1}{2}\right)$


## The Culprit

- Suppose $f$ has two critical points: $p$ of index 2 and $q$ of index 3
- Let $p$ and $q$ be separated by $Z_{1 / 2}=f^{-1}\left(\frac{1}{2}\right)$
- Fact: $p$ and $q$ can be canceled if there is exactly one flow line from $p$ to $q$


## The Culprit

We define

$$
\begin{aligned}
& S_{+}=\left\{x \in Z_{1 / 2} \mid x \text { flows to } p \text { as } t \rightarrow \infty\right\} \\
& S_{-}=\left\{x \in Z_{1 / 2} \mid x \text { flows to } q \text { as } t \rightarrow-\infty\right\} .
\end{aligned}
$$

These are embedded spheres. If $S_{-} \pitchfork S_{+}$is a single point we can glue the flow lines and are done.

## The Culprit



Fig. 6
Figure 2: Analogy in dimension three showing $S_{+}$and $S_{-}$intersection transversely and the resulting flow line. From [3]

## The Culprit

The algebraic intersection number is 1 because $W$ is h-cobordism. Problem: The geometric intersection number might not agree! We need an isotopy to correct this.

## The Whitney Disk

Usual procedure:

- Choose intersection points with opposite signs, e.g. $x$ and $y$
- Find path $\alpha \subset S_{+}$and $\beta \subset S_{-}$joining them
- W simply-connected $\Longrightarrow \alpha \cup \beta$ inessential
- There is a disk $D \subset W$ with $\partial D=\alpha \cup \beta$
- If the disk lies outside $S_{+}$and $S_{-}$we get an isotopy removing the intersection points


## The Culprit



Fig. 7

Figure 3: Removing intersection points in pairs. From [3]

## The Whitney Disk

In dimension $n \geq 5$ :

- $D$ is generically embedded
- $D$ generically does not intersect $S_{+}$and $S_{-}$in any interior points


## The Whitney Disk

In dimension $n \geq 5$ :

- $D$ is generically embedded
- $D$ generically does not intersect $S_{+}$and $S_{-}$in any interior points

In dimension four on the other hand both is not true! The intersection form makes this clear.

## Final Note

With the existence of non-smooth manifolds one the one hand and the failure of the h -cobordism on the other hand, we see that the topology and geometry of four-manifolds is quite unique.

## Thank you for your attention!

## References

Alexandru Scorpan.
The wild world of 4-manifolds.
Providence, R.I., 2005.
围 Thomas Walpuski.
MTH 993 Spring 2018: Spin Geometry.
https://walpu.ski/Teaching/SpinGeometry.pdf.
E Simon K Donaldson and Peter B Kronheimer.
The geometry of four-manifolds.
Oxford mathematical monographs. Oxford, 1. publ. in pbk. edition, 1997.

