Tropical Fukaya Algebras

Sushmita Venugopalan

November 16, 2020

arXiv:2004.14314. Joint work with Chris Woodward.

Sushmita Venugopalan

Tropical Fukaya Algebras

November 16, 2020 1/70

Table of Contents

Introducing the problem

- 2 Single cut : Unbroken to broken
- 3 Multiple cut : Unbroken to broken
- 4 Degenerating matching conditions

A D > A A P >
A

Given a symplectic manifold (X, ω) ,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

a separating hypersurface $Z \subset X$,

A D b A A b A

э

and a Hamiltonian S^1 -action in a neighborhood of Z,

Sushmita Venugopalan

a symplectic cut produces two symplectic manifolds X_+, X_- .

		< □ >	< 🗗 >	< ₹ >	◆豊♪	- 2	500
Sushmita Venugopalan	Tropical Fukaya Algebras			Nove	mber 16, 2	2020	6/70

a symplectic cut produces two symplectic manifolds X_+, X_- .

Both X_+ , X_- contain $Y := Z/S^1$ as a *relative divisor*.

< 口 > < 同

Symplectic cut : examples

Blowing up a point.

Symplectic cut : examples

Blowing up a point.

A cut space can be viewed as the degeneration of the smooth manifold X into a space $X_+ \cup_Y X_-$ with a normal crossing singularity along Y.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A cut space can be viewed as the degeneration of the smooth manifold *X* into a space $X_+ \cup_Y X_-$ with a normal crossing singularity along *Y*. That is, there is a fibration

$$\mathcal{X} \to \Delta, \quad \Delta \subset \mathbb{C}$$

with $\mathcal{X}_t \simeq X$ for all $t \neq 0$, and $\mathcal{X}_0 \simeq X_+ \cup_Y X_-$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A cut space can be viewed as the degeneration of the smooth manifold *X* into a space $X_+ \cup_Y X_-$ with a normal crossing singularity along *Y*. That is, there is a fibration

$$\mathcal{X} \to \Delta, \quad \Delta \subset \mathbb{C}$$

with $\mathcal{X}_t \simeq X$ for all $t \neq 0$, and $\mathcal{X}_0 \simeq X_+ \cup_Y X_-$.

Example : \mathcal{X} is a Lefschetz fibration and the singular fiber \mathcal{X}_0 is disconnected by the singular point. The neighborhood of the singularity is as in the figure.

A cut space can be viewed as the degeneration of the smooth manifold *X* into a space $X_+ \cup_Y X_-$ with a normal crossing singularity along *Y*. That is, there is a fibration

$$\mathcal{X} \to \Delta, \quad \Delta \subset \mathbb{C}$$

with $\mathcal{X}_t \simeq X$ for all $t \neq 0$, and $\mathcal{X}_0 \simeq X_+ \cup_Y X_-$.

Example : \mathcal{X} is a Lefschetz fibration and the singular fiber \mathcal{X}_0 is disconnected by the singular point. The neighborhood of the singularity is as in the figure.

In general the degeneration corresponding to a symplectic cut is a family version of the above example, where the family is parametrized by *Y*.

Sushmita Venugopalan

Tropical Fukaya Algebras

Inputs :

- A symplectic manifold (X, ω) ,
- hypersurfaces $Z_i \subset X, i = 1, 2, \ldots$,
- S¹-action on the neighborhoods of hypersurfaces,
- on neighborhoods of intersections $\cap_i Z_i$, the S^1 -actions fit together into a Hamiltonian torus action.

2

<ロト < 四ト < 三ト < 三ト

Â

2

イロト イポト イヨト イヨト

Output : Collection of symplectic manifolds, called **cut spaces**, with relative normal crossing divisors.

Â

Output : Collection of symplectic manifolds, called **cut spaces**, with relative normal crossing divisors.

Example : In the cut space X_1 , Z_1/S^1 and Z_2/S^1 are relative divisors whose intersection is Z_0/T^2 .

Sushmita Venugopalan

Â

- Can counts of holomorphic curves in the unbroken manifold *X* be expressed in terms of
 - counts of holomorphic curves in the broken manifold \mathcal{X} ?

★ ∃ >

< < >> < <</>

Can counts of holomorphic curves in the unbroken manifold *X* be expressed in terms of

- counts of holomorphic curves in the broken manifold \mathcal{X} ?
- a sum of products of curves in pieces of the broken manifold \mathcal{X} ?

• Unbroken maps $u: C \to X$: these are the standard pseudoholomorphic maps living in X, whose domain C is a nodal curve.

< □ > < 同 > < 回 > < 回 > < 回

- Unbroken maps $u: C \to X$: these are the standard pseudoholomorphic maps living in *X*, whose domain *C* is a nodal curve.
- Broken maps u : C → X : the domain is a nodal curve, different components of C map to different components in the broken manifold X and there is a matching condition at nodes. Broken maps have an underlying tropical graph.

・ロット (四)・ (日)・ (日)

- Unbroken maps $u: C \to X$: these are the standard pseudoholomorphic maps living in *X*, whose domain *C* is a nodal curve.
- Broken maps u : C → X : the domain is a nodal curve, different components of C map to different components in the broken manifold X and there is a matching condition at nodes. Broken maps have an underlying tropical graph.
- Split maps $u: C \to \mathcal{X}$: a variant of a broken map in which the matching condition at the nodes is degenerated into a combinatorial condition.

・ロット (四)・ (日)・ (日)

Can counts of holomorphic curves in the unbroken manifold X (unbroken maps) be expressed in terms of

• counts of holomorphic curves in the broken manifold \mathcal{X} (broken maps)?

Can counts of holomorphic curves in the unbroken manifold X (unbroken maps) be expressed in terms of

- counts of holomorphic curves in the broken manifold \mathcal{X} (broken maps)?
- a sum of products of curves in pieces of the broken manifold \mathcal{X} (split maps)?

- Part 1: Unbroken to Broken.
- Part 2 : Broken to Split.

Table of Contents

Introducing the problem

2 Single cut : Unbroken to broken

- 3 Multiple cut : Unbroken to broken
- 4 Degenerating matching conditions

- A -

- B- 6

Single cut : stretching necks

For any $\nu > 0$, we equip the symplectic manifold (X, ω) with a tamed almost structure J^{ν} so that (X, J^{ν}) has a **neck** of length ν .

Single cut : stretching necks

For any $\nu > 0$, we equip the symplectic manifold (X, ω) with a tamed almost structure J^{ν} so that (X, J^{ν}) has a **neck** of length ν .

The neck region is a fibration $Z \times [-\frac{\nu}{2}, \frac{\nu}{2}] \to Y$, and the fibers are holomorphic cylinders $S^1 \times [-\frac{\nu}{2}, \frac{\nu}{2}]$.

Sushmita Venugopalan

Tropical Fukaya Algebras

November 16, 2020 17/70

Stretching the neck : example

A conic with neck length ν is

$$\{xy=\nu^{-1}\}\subset\mathbb{P}^2.$$

$$\begin{array}{c} \overbrace{\mathbf{0}}_{\mathbb{R}} \\ \overbrace{\mathbf{x}}_{\mathbb{R}} \\ \downarrow \\ \mathbf{x}_{\mathbb{R}} \\$$

A D > A A P >
A

-

ш

Stretching the neck : example

A conic with neck length ν is

$$\{xy=\nu^{-1}\}\subset \mathbb{P}^2.$$

$$\begin{array}{c} \overbrace{\mathbf{0}} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \mathbf{x} \\ \mathbf{x}$$

Note : The symplectic form is unchanged on the family of neck-stretched manifolds (X, J_{ν}) .

ш

• • • • • • • • • • • • • •

The moduli spaces of J^{ν} -holomorphic curves are homotopy equivalent for all ν .

• = • •

The moduli spaces of J^{ν} -holomorphic curves are homotopy equivalent for all ν .

In the limit $\nu \to \infty$, we obtain broken maps.

Theorem (Hofer et al, Ionel-Parker etc.)

Suppose $u_{\nu}: C \to (X, J^{\nu})$ is a sequence of pseudoholomorphic maps with uniformly bounded ω -area. Then a subsequence converges to a broken map.

Convergence to broken maps

In the limit some curve components collapse into the relative divisor. Think of these as lying in the 'neck piece' $Z \times \mathbb{R}$.

• The target space of a broken map is a broken manifold

$$\mathcal{X} = X_+ \cup (\overline{Z \times \mathbb{R}}) \cup X_-$$

• • • • • • • • • • • •

• The target space of a broken map is a broken manifold

$$\mathcal{X} = X_+ \cup (\overline{Z \times \mathbb{R}}) \cup X_-$$

• The space $\overline{Z \times \mathbb{R}}$ is called the **neck piece**. It is the compactification of $Z \times \mathbb{R}$ by adding divisors at $Z \times \{\pm \infty\}$. It is a \mathbb{P}^1 -bundle over the relative divisor $Y := Z/S^1$.
• The target space of a broken map is a broken manifold

$$\mathcal{X} = X_+ \cup (\overline{Z \times \mathbb{R}}) \cup X_-$$

- The space $\overline{Z \times \mathbb{R}}$ is called the **neck piece**. It is the compactification of $Z \times \mathbb{R}$ by adding divisors at $Z \times \{\pm \infty\}$. It is a \mathbb{P}^1 -bundle over the relative divisor $Y := Z/S^1$.
- A broken map consists of components in X_+ , X_- and the neck piece $\overline{Z \times \mathbb{R}}$ satisfying a matching condition at nodes :

Broken maps

The matching condition at a node is

- $u_+(w_+)$, $u_-(w_-)$ are the same points in the relative divisor *Y*,
- The intersection multiplicities of u_+ , u_- with *Y* at the nodal point are equal.

- A - N

Justifying the convergence

Nodes are formed by the convergence of long cylinders with small area. This leads to equal intersection multiplicities and matching on the divisor Y:

• Let

$$u_{\nu}:[0,l_{\nu}]\times S^1\to (X,J^{\nu})$$

be a sequence of cylinders with uniformly bounded Hofer energy whose projections to *Y* have small enough area.

• Let

$$u_{\nu}:[0,l_{\nu}]\times S^1\to (X,J^{\nu})$$

be a sequence of cylinders with uniformly bounded Hofer energy whose projections to *Y* have small enough area.

Then, u_ν is asymptotically close to a 'trivial cylinder' in Z × ℝ.

• Let

$$u_{\nu}:[0,l_{\nu}]\times S^1\to (X,J^{\nu})$$

be a sequence of cylinders with uniformly bounded Hofer energy whose projections to *Y* have small enough area.

- Then, u_ν is asymptotically close to a 'trivial cylinder' in Z × ℝ.
- A trivial cylinder in the C[×]-bundle
 Z × ℝ → Y projects to a constant on Y, and is therefore an *n*-cover of a fiber.

Breaking annulus lemma

The precise statement for the phenomenon explained in the last slide is the following:

Theorem (Breaking annulus lemma)

Let $l_{\nu} \to 0$, and $u_{\nu} : [-l_{\nu}, l_{\nu}] \times S^1 \to Z \times \mathbb{R}$ be a sequence of holomorphic cylinders satisfying

$$\omega_Y(u_\nu) < \hbar, \quad \sup_{\nu} E_{Hofer}(u_\nu) < \infty.$$

Then there is a subsequence of $(u_{\nu})_{\nu}$ and constants C, $\gamma > 0$, $\mu \in \mathbb{Z}_+$ such that

$$d(u_{\nu}(s,t), u_{\nu}^{\text{triv}}(s,t)) \le C(e^{-\gamma|l_{\nu}-s|} + e^{-\gamma|-l_{\nu}-s|})$$

where u_{ν}^{triv} is a trivial cylinder defined as $u_{\nu}^{\text{triv}}(s,t) = e^{\mu(s+it)}u_{\nu}(0,0)$.

イロト イポト イヨト イヨト

A subsequence of (u_ν)_ν converges to a node with intersection multiplicity n.

Justifying the convergence

 A converging sequence of maps u_ν : C → X^ν consists of pockets of high area separated by long cylinders :

Justifying the convergence

- A converging sequence of maps *u*_ν : *C* → *X*^ν consists of pockets of high area separated by long cylinders :
- A pocket of high area converges modulo a translation in the target space.

For example $e^{t_5^{\nu}}u_{\nu}$ converges to a limit component of the broken map.

The idea of a tropical graph

For each component *i* of the domain of the limit broken map the limit $\lim_{\nu \to \infty} \frac{t_{i\nu}^i}{\nu}$ gives a relative position of the map in the neck region.

• = • •

< < >> < <</>

The idea of a tropical graph

For each component *i* of the domain of the limit broken map the limit $\lim_{\nu \to \infty} \frac{t_{i\nu}^{i}}{\nu}$ gives a relative position of the map in the neck region.

We obtain a map

 $\mathcal{T}:$ Graph of domain curve $\rightarrow [0,1]$

called the tropical graph.

Sushmita Venugopalan

Tropical Fukaya Algebras

Table of Contents

Introducing the problem

- 2 Single cut : Unbroken to broken
- 3 Multiple cut : Unbroken to broken
- 4 Degenerating matching conditions

< ∃ >

A multiple cut has an underlying polytopal decomposition of t[∨] ≃ ℝⁿ into a collection P⁰ of top-dimensional Delzant polytopes P ⊂ t[∨].

- A multiple cut has an underlying polytopal decomposition of t[∨] ≃ ℝⁿ into a collection P⁰ of top-dimensional Delzant polytopes P ⊂ t[∨].
- **2** Let \mathcal{P} be the closure of \mathcal{P}^0 under intersections.

The polytopal decomposition for our first example of a multiple cut is :

Here $P_{ij} = P_i \cap P_j$, $P_{\cap} = P_1 \cap P_2 \cap P_3$.

- A multiple cut has an underlying polytopal decomposition of t[∨] ≃ ℝⁿ into a collection P⁰ of top-dimensional Delzant polytopes P ⊂ t[∨].
- **2** Let \mathcal{P} be the closure of \mathcal{P}^0 under intersections.

The polytopal decomposition for our first example of a multiple cut is :

Here $P_{ij} = P_i \cap P_j$, $P_{\cap} = P_1 \cap P_2 \cap P_3$.

The set of polytopes is $\mathcal{P} = \{P_i\}_i \cup \{P_{ij}\}_{i,j} \cup \{P_{\cap}\}.$

The input for a multiple cut consists of (more precise than earlier)

- a decomposition of $\mathfrak{t}^{\vee} \simeq \mathbb{R}^n$ into Delzant polytopes
- and a tropical moment map $\Phi : (X, \omega) \to \mathfrak{t}^{\vee}$.

Definition (Tropical moment map for a decomposition \mathcal{P})

is a map $\Phi: X \to \mathfrak{t}^{\vee}$ that generates a Hamiltonian T_P -action in a neighborhood of $\Phi^{-1}(P)$, where $\mathfrak{t}_P := \operatorname{ann}(TP)$.

< ロ > < 同 > < 三 > < 三 >

• In our example $\mathfrak{t}^{\vee} \simeq \mathbb{R}^2$, $T_{P_i} = {\mathrm{Id}}$, $T_{P_{ij}} \simeq S^1$, $T_{P_{\cap}} \simeq (S^1)^2$.

< ∃ >

- In our example $\mathfrak{t}^{\vee} \simeq \mathbb{R}^2$, $T_{P_i} = \{ \mathrm{Id} \}$, $T_{P_{ij}} \simeq S^1$, $T_{P_{\cap}} \simeq (S^1)^2$.
- Thus there is an S^1 -action in the neighborhood of $\Phi^{-1}(P_i)$ and a $(S^1)^2$ -action in a neighborhood of $\Phi^{-1}(P_{\cap})$.

- In our example $\mathfrak{t}^{\vee} \simeq \mathbb{R}^2$, $T_{P_i} = \{ \mathrm{Id} \}$, $T_{P_{ij}} \simeq S^1$, $T_{P_{\cap}} \simeq (S^1)^2$.
- Thus there is an S^1 -action in the neighborhood of $\Phi^{-1}(P_i)$ and a $(S^1)^2$ -action in a neighborhood of $\Phi^{-1}(P_{\cap})$.
- In general $P_0 \subset P_1 \implies T_{P_1} \subset T_{P_0}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Running example for multiple cut : Two orthogonal single cuts form a multiple cut with polytopal decomposition as below.

The set of polytopes is $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_{12}, P_{23}, P_{34}, P_{41}, P_{\cap}\}.$

- Given a tropical Hamiltonian action (X, P, Φ) a multiple cut produces a cut space X_P corresponding to each top-dimensional polytope P ∈ P.
- A cut space *X_P* has **relative divisors** *X_Q* for every codimension one polytope *Q* ⊂ *P*.
- For example, $X_{P_{12}}$, $X_{P_{23}}$ are relative divisors in X_{P_2} .

Neck-stretched almost complex structure

Theorem (VW)

A sequence of pseudoholomorphic maps $u_{\nu} : C_{\nu} \to (X, J_{\nu})$ with bounded ω -area has a subsequence that converges to a broken map in \mathcal{X} .

Similar results : Eleny Ionel, Brett Parker, Mohammad F. Tehrani. Idea of a tropical graph : Brett Parker.

Convergence for a multiple cut

The following is a picture to have in mind for convergence in a multiple cut. Elements in a convergent sequence of holomorphic maps $u_{\nu} : C \to (X, J_{\nu})$ are of the following form.

Convergence for a multiple cut

The following is a picture to have in mind for convergence in a multiple cut. Elements in a convergent sequence of holomorphic maps $u_{\nu} : C \to (X, J_{\nu})$ are of the following form.

There are pockets of high area separated by long cylinders with small area.

The target space of a broken map is a broken manifold.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The target space of a broken map is a broken manifold.

The broken manifold \mathcal{X} is the disjoint union

$$\mathcal{X} := \bigsqcup_{P \in \mathcal{P}} X_{\overline{P}}$$

where $X_{\overline{P}} \to X_P$ is a T_P -toric fibration.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The target space of a broken map is a broken manifold.

The broken manifold \mathcal{X} is the disjoint union

$$\mathcal{X} := \bigsqcup_{P \in \mathcal{P}} X_{\overline{P}}$$

where $X_{\overline{P}} \to X_P$ is a T_P -toric fibration.

Thus relative submanifolds in cut spaces are thickened into top-dimensional pieces in the broken manifold.

• = • •

< <p>I > < <p>I

The target space of a broken map is a broken manifold.

The broken manifold \mathcal{X} is the disjoint union

$$\mathcal{X} := \bigsqcup_{P \in \mathcal{P}} X_{\overline{P}}$$

where $X_{\overline{P}} \to X_P$ is a T_P -toric fibration.

Thus relative submanifolds in cut spaces are thickened into top-dimensional pieces in the broken manifold.

A component $X_{\overline{P}}$ of the broken manifold has a natural action of the complex torus $T_{P,\mathbb{C}}$.

イロト イポト イヨト イヨト

A component $X_{\overline{P}}$ of the broken manifold has a natural action of the complex torus $T_{P,\mathbb{C}}$.

Symmetry group on
$$X_{\overline{P}_{\cap}}$$

= $T_{P_{\cap}} := \mathbb{C}^{\times}$

Symmetry group on $X_{\overline{P}_{ij}}$ = $T_{P_{ij}} := \mathbb{C}^{\times}$

Symmetry group on X_{P_i} = $T_{P_i} := { Id }$

• • • • • • • • • • • •

In the broken manifold \mathcal{X} the piece $X_{\overline{P}}$ is a toric fibration

$$V_{P^{\vee}} \to X_{\overline{P}} \to X_P$$

whose fiber is a toric variety with moment polytope P^{\vee} satisfying

In the broken manifold \mathcal{X} the piece $X_{\overline{P}}$ is a toric fibration

$$V_{P^{\vee}} \to X_{\overline{P}} \to X_P$$

whose fiber is a toric variety with moment polytope P^{\vee} satisfying

P[∨] is complementary dimensional : dim(*P*[∨]) = dim(t[∨]) − dim(*P*),

In the broken manifold \mathcal{X} the piece $X_{\overline{P}}$ is a toric fibration

$$V_{P^{\vee}} \to X_{\overline{P}} \to X_P$$

whose fiber is a toric variety with moment polytope P^{\vee} satisfying

- *P*[∨] is complementary dimensional : dim(*P*[∨]) = dim(t[∨]) − dim(*P*),
- if $Q \subset P$ is a face, then $P^{\vee} \subset Q^{\vee}$ is a face.

In the broken manifold \mathcal{X} the piece $X_{\overline{P}}$ is a toric fibration

$$V_{P^{\vee}} \to X_{\overline{P}} \to X_P$$

whose fiber is a toric variety with moment polytope P^{\vee} satisfying

- P^{\vee} is complementary dimensional : $\dim(P^{\vee}) = \dim(\mathfrak{t}^{\vee}) \dim(P)$,
- if $Q \subset P$ is a face, then $P^{\vee} \subset Q^{\vee}$ is a face.

The **dual polyopes** P^{\vee} fit into a **dual complex**

$$B^{\vee} := (\cup_{P \in \mathcal{P}} P^{\vee}) / \sim .$$

• We will see that the tropical graph lies in the dual complex.

• = • •

- We will see that the tropical graph lies in the dual complex.
- There are different choices of the dual complex. In our example, we may vary the side lengths of the rectangle.

- 47 ▶

< ∃ > <

- We will see that the tropical graph lies in the dual complex.
- There are different choices of the dual complex. In our example, we may vary the side lengths of the rectangle.
- We will see that the moduli space of broken maps $\mathcal{M}(\mathcal{X})$ depends on the dual complex.

- We will see that the tropical graph lies in the dual complex.
- There are different choices of the dual complex. In our example, we may vary the side lengths of the rectangle.
- We will see that the moduli space of broken maps $\mathcal{M}(\mathcal{X})$ depends on the dual complex.
- The dual complex is part of the datum required to construct neck-stretched almost complex structures. Thus the moduli space of maps M(X, J^v) depends on the dual complex.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Broken manifold

Since the piece $X_{\overline{P}}$ is a toric fibration

$$V_{P^{\vee}} \to X_{\overline{P}} \xrightarrow{\pi_P} X_P$$

it has two kinds of **relative divisors** :

• horizontal relative divisors, which are inverse images of relative divisors $X_Q \subset X_P$, $Q \in \mathcal{P}$ namely

$$\pi_P^{-1}(X_Q),$$

• and **vertical relative divisors**, which are torus-invariant divisors of the fiber $V_{P^{\vee}}$.

Broken manifold

Since the piece $X_{\overline{P}}$ is a toric fibration

$$V_{P^{\vee}} \to X_{\overline{P}} \xrightarrow{\pi_P} X_P$$

it has two kinds of **relative divisors** :

• horizontal relative divisors, which are inverse images of relative divisors $X_Q \subset X_P, Q \in \mathcal{P}$ namely

$$\pi_P^{-1}(X_Q),$$

• and **vertical relative divisors**, which are torus-invariant divisors of the fiber $V_{P^{\vee}}$.

We introduce notation for the $T_{P,\mathbb{C}}$ -principal bundle

$$Z_{P,\mathbb{C}} := X_{\overline{P}} \setminus \{ \text{vertical divisors} \},\$$

and the complement of all relative divisors

 $X_{\overline{P}}^{\circ} := X_{\overline{P}} \setminus \{ \text{relative divisors} \}.$

イロト 不得 とくき とくき とうき

Broken manifold

Cylindrical coordinates in $(X_{P_1}$ – relative divisors)

 (X,J^ν)

Neck stretching using dual polytope

A broken map $u: C \to \mathcal{X}$ consists of

- a domain nodal curve C modelled on a graph Γ ,
- for each component $C_v \subset C$, a map $u_v : C_v \to X_{\overline{P}(v)}$ to a component of \mathcal{X} such that

$$u_v(C_v \setminus \{nodes\}) \subset X^{\circ}_{\overline{P}(v)},$$

• and a *tropical graph* $\Gamma \to B^{\vee}$.

For every edge *e* there are holomorphic coordinates in neighborhoods of the nodal lifts w_e^{\pm} for which the *matching condition* is satisfied.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A broken map $u: C \to \mathcal{X}$ consists of

- a domain nodal curve C modelled on a graph Γ ,
- for each component $C_v \subset C$, a map $u_v : C_v \to X_{\overline{P}(v)}$ to a component of \mathcal{X} such that

$$u_v(C_v \setminus \{nodes\}) \subset X^{\circ}_{\overline{P}(v)},$$

• and a *tropical graph* $\Gamma \to B^{\vee}$.

For every edge *e* there are holomorphic coordinates in neighborhoods of the nodal lifts w_e^{\pm} for which the *matching condition* is satisfied.

Remark : As in SFT, one may think of *u* as a map from the punctured curve $C - \{nodes\}$ to manifolds with cylindrical ends.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For example, a sequence of maps $u_{\nu}: C \rightarrow (X, J_{\nu})$ of the form

3

converges to a broken map whose tropical graph is

A 🖓

Broken map : Tropical graph

A broken map *u* has a tropical graph

 $\mathcal{T}:\Gamma\to B^{\vee}$

that satisfies the following.

• (Vertex Polytope) For a vertex v of Γ

$$u(C_v) \subset X_{\overline{P(v)}} \implies \mathcal{T}(v) \in P^{\vee}$$

(Edge Slope) The node cooresponding to an edge *e* of Γ has intersection multiplicity μ := (μ₁,..., μ_n) ∈ (Z_{>0})ⁿ with relative divisors

 $\implies \mathcal{T}(e)$ is a line segment with slope μ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Broken map : Tropical graph

A broken map *u* has a tropical graph

 $\mathcal{T}:\Gamma\to B^{\vee}$

that satisfies the following.

• (Vertex Polytope) For a vertex v of Γ

$$u(C_v) \subset X_{\overline{P(v)}} \implies \mathcal{T}(v) \in P^{\vee}$$

(Edge Slope) The node cooresponding to an edge *e* of Γ has intersection multiplicity μ := (μ₁,..., μ_n) ∈ (Z_{>0})ⁿ with relative divisors

 $\implies \mathcal{T}(e)$ is a line segment with slope μ .

Remark : Two tropical graphs are isomorphic if they have the same edge slopes. Thus a tropical graph is a combinatorial invariant of broken maps.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Broken map : Example

• A broken map consists of a map and a tropical graph.

17 ▶

Broken map : Example

• A broken map consists of a map and a tropical graph.

• At the node *w* the intersection multiplicity with relative divisors on both lifts of the node *w* are equal to the slope $\mu(e) = (\mu_1, \mu_2) \in (\mathbb{Z}_{>0})^2$.

Sushmita Venugopalan

- A - N

Broken map : Example

э

Broken map : Matching condition

We state the matching condition for the example.

The matching condition at the node w is that

- (Horizontal) $u_+(w_+) = u_-(w_-)$ on $X_{P_{\cap}}$, and
- (Vertical) the leading Taylor coefficients of u₊, u_− in the directions normal to X_{P_∩} match.

• • • • • • • • • • • • •

Broken map : Matching condition

In general the matching condition is as follows:

The neighborhood of the node w_e lies in a region with a $T_{P(e),\mathbb{C}}$ -action where $P(e) = P(v_+) \cap P(v_-)$. The matching condition is that

- (Horizontal) $u_+(w_{e,+}) = u_-(w_{e,-})$ on $X_{P(e)}$, and
- (Vertical) the leading Taylor coefficients of u_+ , u_- match in the vertical directions of the fibration

$$T_{P(e),\mathbb{C}} \to Z_{P(e),\mathbb{C}} \to X_{P(e)}.$$

Sushmita Venugopalan

Remark : In the case of a single cut, the vertical matching condition is automatically satisfied by a suitable choice of holomorphic coordinates in neighborhoods of the nodal lifts.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Suppose the node *w* is formed by the convergence of long cylinder

 $u_{
u}: [0, l_{
u}] \times S^1 \to (X, J_{
u})$ with small area.

- Suppose the node *w* is formed by the convergence of long cylinder
 u_ν : [0, *l_ν*] × S¹ → (X, J_ν) with small area.
- We may view u_{ν} as lying in a $(\mathbb{C}^{\times})^2$ -fibration

$$(\mathbb{C}^{\times})^2 \to Z_{P_{\cap},\mathbb{C}} \xrightarrow{\pi_{P_{\cap}}} X_{P_{\cap}},$$

and the maps u_{ν} are asymptotically close to a trivial cylinder.

- Suppose the node *w* is formed by the convergence of long cylinder
 u_ν : [0, *l_ν*] × S¹ → (X, J_ν) with small area.
- We may view u_{ν} as lying in a $(\mathbb{C}^{\times})^2$ -fibration

$$(\mathbb{C}^{\times})^2 \to Z_{P_{\cap},\mathbb{C}} \xrightarrow{\pi_{P_{\cap}}} X_{P_{\cap}},$$

and the maps u_{ν} are asymptotically close to a trivial cylinder.

• A trivial cylinder satisfies

(Base) $\pi_{P_{\cap}} \circ u_{triv} = constt,$ (Fiber) $u_{triv}(z) = (az^{\mu_1}, bz^{\mu_2})$

for some $\mu = (\mu_1, \mu_2) \in (\mathbb{Z}_+)^2$.

The breaking annulus lemma is the precise statement for 'asymptotic closeness to a trivial cylinder'. The result is stated for a $T_{P,\mathbb{C}}$ -principal bundle

$$T_{P,\mathbb{C}} \to Z_{P,\mathbb{C}} \to X_P.$$

Theorem (Breaking annulus lemma)

Let $l_{\nu} \to 0$, and $u_{\nu} : [-l_{\nu}, l_{\nu}] \times S^1 \to Z_{P,\mathbb{C}}$ be a sequence of holomorphic cylinders satisfying

$$\omega_{X_P}(u_{\nu}) < \hbar, \quad \sup_{\nu} E_{Hofer}(u_{\nu}) < \infty.$$

Then there is a subsequence of $(u_{\nu})_{\nu}$ and constants $C, \gamma > 0, \mu \in \mathfrak{t}_{P,\mathbb{Z}}$ such that

$$d(u_{\nu}(s,t), u_{\nu}^{\mathrm{triv}}(s,t)) \leq C(e^{-\gamma |l_{\nu}-s|} + e^{-\gamma |-l_{\nu}-s|})$$

where u_{ν}^{triv} is a trivial cylinder defined as $u_{\nu}^{\text{triv}}(s,t) = e^{\mu(s+it)}u_{\nu}(0,0)$.

• Breaking annulus lemma \implies the punctured curves $u_+|C \setminus \{w_+\}$, $u_-|C \setminus \{w_-\}$ are asymptotic to the **same** trivial cylinder.

• • • • • • • • • • • • •

- Breaking annulus lemma \implies the punctured curves $u_+|C\setminus\{w_+\}$, $u_-|C\setminus\{w_-\}$ are asymptotic to the **same** trivial cylinder.
- This is equivalent to the matching condition at w. Indeed u_{triv}^{\pm} is the leading order Taylor approximation of u^{\pm} .

• • • • • • • • • • • • •

Matching condition : an alternate statement

• The trivial cylinder *u*_{triv} is

$$\mathbb{C}^{\times} \simeq T_{\mu,\mathbb{C}} \subset (\mathbb{C}^{\times})^2$$

the subtorus generated by the intersection multiplicity vector $\mu = (\mu_1, \mu_2) \in (\mathbb{Z}_+)^2$.

Matching condition : an alternate statement

• The trivial cylinder *u*_{triv} is

$$\mathbb{C}^{\times} \simeq T_{\mu,\mathbb{C}} \subset (\mathbb{C}^{\times})^2$$

the subtorus generated by the intersection multiplicity vector $\mu = (\mu_1, \mu_2) \in (\mathbb{Z}_+)^2$.

• Matching condition :

 $(u_+ \mod T_{\mu,\mathbb{C}})(w_+) = (u_- \mod T_{\mu,\mathbb{C}})(w_-)$ in $Z_{P_\cap,\mathbb{C}}/T_{\mu,\mathbb{C}}$.

Matching condition : an alternate statement

• The trivial cylinder *u*_{triv} is

$$\mathbb{C}^{\times} \simeq T_{\mu,\mathbb{C}} \subset (\mathbb{C}^{\times})^2$$

the subtorus generated by the intersection multiplicity vector $\mu = (\mu_1, \mu_2) \in (\mathbb{Z}_+)^2$.

• Matching condition :

 $(u_+ \mod T_{\mu,\mathbb{C}})(w_+) = (u_- \mod T_{\mu,\mathbb{C}})(w_-)$

in $Z_{P_{\cap},\mathbb{C}}/T_{\mu,\mathbb{C}}$.

Remark : The matching condition has codimension $\dim(X) - 2$. Therefore the presence of a node does not decrease the index of the map.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The limit of a converging sequence (u_ν)_ν of J_ν-holomorphic maps of index zero is a broken map u : C → X of index 0.

- The limit of a converging sequence (u_ν)_ν of J_ν-holomorphic maps of index zero is a broken map u : C → X of index 0.
- Conversely gluing an index 0 map produces an index zero *J_ν*-holomorphic map for all *ν*.

- The limit of a converging sequence (u_ν)_ν of J_ν-holomorphic maps of index zero is a broken map u : C → X of index 0.
- Conversely gluing an index 0 map produces an index zero *J_ν*-holomorphic map for all *ν*.
- The convergence result includes a statement relating the neck lengths in the domains and target space, which is proved using the breaking annulus lemma. This statement is used in the gluing proof.

• Let Γ be the tropical graph of a broken map. The **tropical symmetry group** is the subgroup

$$T_{\operatorname{trop}}(\Gamma) \subset \prod_{\nu \in \operatorname{Vert}(\Gamma)} T_{P(\nu),\mathbb{C}}$$

that preserves the matching condition at nodes,

• • • • • • • • • • • • • •

• Let Γ be the tropical graph of a broken map. The **tropical symmetry group** is the subgroup

$$T_{\operatorname{trop}}(\Gamma) \subset \prod_{v \in \operatorname{Vert}(\Gamma)} T_{P(v),\mathbb{C}}$$

that preserves the matching condition at nodes,

• and is given by the condition that

$$(t_{\nu})_{\nu \in \operatorname{Vert}(\Gamma)} \in T_{\operatorname{trop}}(\Gamma)$$

iff for any edge $e = (v_+, v_-)$,

$$t_{v_+}t_{v_-}^{-1} \in T_{\mu(e),\mathbb{C}}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Let Γ be the tropical graph of a broken map. The **tropical symmetry group** is the subgroup

$$T_{\operatorname{trop}}(\Gamma) \subset \prod_{v \in \operatorname{Vert}(\Gamma)} T_{P(v),\mathbb{C}}$$

that preserves the matching condition at nodes,

• and is given by the condition that

$$(t_v)_{v \in \operatorname{Vert}(\Gamma)} \in T_{\operatorname{trop}}(\Gamma)$$

iff for any edge $e = (v_+, v_-)$,

$$t_{\nu_+}t_{\nu_-}^{-1}\in T_{\mu(e),\mathbb{C}}.$$

• The relative action across an edge *e* can only be in the direction of the trivial cylinder asymtotically close to the node.

Sushmita	Venugopal	an
----------	-----------	----

• Symmetries of the tropical graph are the infinitesimal generators of the tropical symmetry group.

- Symmetries of the tropical graph are the infinitesimal generators of the tropical symmetry group.
- Symmetries of the tropical graph are the ways of moving the vertices in Γ without changing the edge slope.

A broken map of index 0 or 1 has a rigid tropical graph. Indeed, since the action of T_{trop}(Γ) does not have infinitesimal stabilizers

 $\operatorname{ind}(u) \ge \dim(T_{\operatorname{trop}}(\Gamma)).$

• • • • • • • • • • • • • •

A broken map of index 0 or 1 has a rigid tropical graph. Indeed, since the action of T_{trop}(Γ) does not have infinitesimal stabilizers

 $\operatorname{ind}(u) \ge \dim(T_{\operatorname{trop}}(\Gamma)).$

• For a single cut, broken maps of index 0 and 1 do not have componets in the neck piece. This is because the only rigid tropical graph for a single cut is

• In case of multiple cuts, components in neck pieces occur generically.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Discrete tropical symmetry

Maps with a rigid tropical graph may have a non-empty symmetry group $T_{\text{trop}}(\Gamma)$. For example,

• In the single cut case the rigid tropical graph

$$0 \bullet e \bullet 1 \qquad \qquad \mathcal{T}(e) = 2$$

has a symmetry group of \mathbb{Z}_2 . Indeed, the broken map has two choices of *framing* at the node and thus, there are 2 ways of gluing the node.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Discrete tropical symmetry

Maps with a rigid tropical graph may have a non-empty symmetry group $T_{\text{trop}}(\Gamma)$. For example,

• In the single cut case the rigid tropical graph

$$0 \bullet e \bullet 1 \qquad \qquad \mathcal{T}(e) = 2$$

has a symmetry group of \mathbb{Z}_2 . Indeed, the broken map has two choices of *framing* at the node and thus, there are 2 ways of gluing the node.

• The tropical graph

has 3 choices of framings, and $T_{trop}(\Gamma) = \mathbb{Z}_3$.

Main result

- Suppose *L* ⊂ *X* is a Lagrangian submanifold in the complement of separating hypersurfaces.
- After the multiple cut L ⊂ X is in one of the cut spaces in the complement of relative divisors.

Result

Given $E \ge 0$, for a large enough neck length, the moduli space of holomorphic disks of index zero with area $\le E$

$$\mathcal{M}(X,L)_0^{\leq E} := \{ u : (C,\partial C) \to ((X,J_{\nu}),L), \operatorname{ind}(u) = 0 \}$$

is bijective to the the moduli space holomorphic broken disks of index zero with area $\leq E$

$$\mathcal{M}_{\mathrm{brok}}(\mathcal{X},L)_0^{\leq E} := \{ u : (C,\partial C) \to (\mathcal{X},L), \mathrm{ind}(u) = 0 \}.$$

イロト イポト イヨト イヨト

The composition maps of the broken Fukaya algebra

 $CF_{\mathrm{brok}}(\mathcal{X}, L)$

are defined by counts of broken disks of index zero.

Theorem (VW)

The broken and unbroken Fukaya algebras are homotopy equivalent :

 $CF(X,L) \simeq CF_{\mathrm{brok}}(\mathcal{X},L).$

• • • • • • • • • • • • •

Gromov topology on broken maps

We introduce some notation.

*M*_Γ(*X*) := moduli space of broken holomorphic disks with tropical graph Γ.

• • • • • • • • • • • • • •

Gromov topology on broken maps

We introduce some notation.

- *M*_Γ(*X*) := moduli space of broken holomorphic disks with tropical graph Γ.
- $\mathcal{M}_{\Gamma}(\mathcal{X}) := \widetilde{\mathcal{M}}_{\Gamma}/T_{\mathrm{trop}}(\Gamma).$

< 6 b

We introduce some notation.

- *M*_Γ(*X*) := moduli space of broken holomorphic disks with tropical graph Γ.
- $\mathcal{M}_{\Gamma}(\mathcal{X}) := \widetilde{\mathcal{M}}_{\Gamma}/T_{\mathrm{trop}}(\Gamma).$
- The moduli space of broken holomorphic disks with *d* boundary markings is

$$\mathcal{M}_d(\mathcal{X}) = \cup_{\Gamma} \mathcal{M}_{\Gamma}(\mathcal{X})$$

where the union is over all tropical graphs Γ with *d* boundary markings.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We introduce some notation.

- *M*_Γ(*X*) := moduli space of broken holomorphic disks with tropical graph Γ.
- $\mathcal{M}_{\Gamma}(\mathcal{X}) := \widetilde{\mathcal{M}}_{\Gamma}/T_{\mathrm{trop}}(\Gamma).$
- The moduli space of broken holomorphic disks with *d* boundary markings is

$$\mathcal{M}_d(\mathcal{X}) = \cup_{\Gamma} \mathcal{M}_{\Gamma}(\mathcal{X})$$

where the union is over all tropical graphs Γ with *d* boundary markings.

Let M_d(X)^{≤E} ⊂ M_d(X) be the subset of broken holomorphic disks with area ≤ E.

イロト 不得 とくき とくき とうき

Theorem (Gromov convergence)

Given a sequence $u_{\nu} \in \widetilde{\mathcal{M}}_{\Gamma}(\mathcal{X})^{\leq E}$ there is a subsequence that converges to $u \in \widetilde{\mathcal{M}}_{\Gamma'}(\mathcal{X})^{\leq E}$ where Γ' is a tropical graph with an edge collapse morphism $\Gamma' \to \Gamma$. Further $\operatorname{ind}(u) = \operatorname{ind}(u_{\nu})$.

Gromov topology on broken maps: edge collapse

 $\Gamma_1 \to \Gamma_0, \Gamma_2 \to \Gamma_0, \Gamma_3 \to \Gamma_0$ are edge collapse morphisms. In all graphs $\mathcal{T}(e) = (1, 1)$.

Gromov topology on broken maps: edge collapse

 $\Gamma_1 \to \Gamma_0, \Gamma_2 \to \Gamma_0, \Gamma_3 \to \Gamma_0$ are edge collapse morphisms. In all graphs $\mathcal{T}(e) = (1, 1)$.

Remark : For an edge collapse $\Gamma' \to \Gamma$, $\Gamma' \neq \Gamma \Longrightarrow$ $T_{\text{trop}}(\Gamma) \subsetneq T_{\text{trop}}(\Gamma').$

< <p>I > < <p>I

Gromov topology on broken maps: edge collapse

 $\Gamma_1 \to \Gamma_0, \Gamma_2 \to \Gamma_0, \Gamma_3 \to \Gamma_0$ are edge collapse morphisms. In all graphs $\mathcal{T}(e) = (1, 1)$.

Remark : For an edge collapse $\Gamma' \to \Gamma$, $\Gamma' \neq \Gamma \Longrightarrow$ $T_{\text{trop}}(\Gamma) \subsetneq T_{\text{trop}}(\Gamma').$

Corollary : In Gromov convergence, ind $(u_{\nu}) \leq 1$ implies that the limit has the same tropical type as u_{ν} .

< ロ > < 同 > < 回 > < 回 > < 回 >

Conjecture

For generic perturbations, the space $\mathcal{M}_d(\mathcal{X})^{\leq E}$

- is compact,
- and is the coarse moduli space of a smooth Deligne-Mumford stack.
- In any connected component, generic points have a finite tropical symmetry group.
- For any tropical graph Γ, the moduli space M_Γ(X)^{<E} is a stratum of codimension dim(T_{trop,C}(Γ)) in M_d(X)^{<E}.

• • • • • • • • • • • • • •

Broken maps vs holomorphic buildings

In the single cut case, there are differences between broken maps and holomorphic buildings of SFT.

• = • •

< < >> < <</>

Broken maps vs holomorphic buildings

In the single cut case, there are differences between broken maps and holomorphic buildings of SFT.

• A holomorphic buildings is a *continuous* map from a nodal curve to

$$\mathcal{X}[k] := X_+ \cup_Y Z(\mathbb{P}^1) \cup_Y \cdots \cup_Y Z(\mathbb{P}^1) \cup_Y X_-,$$

for some $k \ge 1$.

• A broken map is not continuous and does not remember the ordering of neck piece components.

Broken maps vs holomorphic buildings

In the single cut case, there are differences between broken maps and holomorphic buildings of SFT.

• A holomorphic buildings is a *continuous* map from a nodal curve to

$$\mathcal{X}[k] := X_+ \cup_Y Z(\mathbb{P}^1) \cup_Y \cdots \cup_Y Z(\mathbb{P}^1) \cup_Y X_-,$$

for some $k \ge 1$.

- A broken map is not continuous and does not remember the ordering of neck piece components.
- We expect that the glued family corresponding to buildings with different orderings are part of the same connected component of the moduli space of unbroken maps. Thus the ordering is not a combinatorial invariant.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

Introducing the problem

- 2 Single cut : Unbroken to broken
- 3 Multiple cut : Unbroken to broken
- 4 Degenerating matching conditions

< ∃ >

Degenerating matching conditions

NEXT WEEK

• • • • • • • • • • • •