Tropical Fukaya Algebras, Part 2

Sushmita Venugopalan

November 23, 2020

arXiv:2004.14314. Joint work with Chris Woodward.

Sushmita Venugopalan

Tropical Fukaya Algebras, Part 2

November 23, 2020 1/46

Table of Contents

2) Unobstructedness for Lagrangians

Degenerating matching conditions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Broken maps of index zero in $\mathcal{X} \stackrel{bijective}{\longleftrightarrow}$ Unbroken maps of index zero in a neck-stretched manifold (X, J_{ν}) for large enough ν .

Theorem

Broken maps of index zero in $\mathcal{X} \stackrel{bijective}{\longleftrightarrow}$ Unbroken maps of index zero in a neck-stretched manifold (X, J_{ν}) for large enough ν .

• Broken maps live in a broken manifold. A broken manifold consists of **cut spaces**

and **neck pieces**, which are relative submanifolds thickened into toric fibrations.

Pieces of the broken manifold have natural actions of complex tori:

Symmetry group on $X_{\overline{P}_{\cap}}$ = $T_{P_{\cap}} := (\mathbb{C}^{\times})^2$ Symmetry group on $X_{\overline{P}_{ij}}$ = $T_{P_{ij}} := \mathbb{C}^{\times}$ Symmetry group on X_{P_i} = $T_{P_i} := \{ \mathrm{Id} \}$ A broken map consists of

- map components in pieces of a broken manifold that satisfy a *matching condition* at nodes,
- and a *tropical graph* whose edge slopes are given by intersection multiplicities at nodes.

Broken map : Example

outrine fondeobulan	Sus	hmita	Venug	opalan
---------------------	-----	-------	-------	--------

э

< **→** → < **→**

э

Broken map : Example

At the node *w* the intersection multiplicity with relative divisors on both lifts of the node *w* are equal to the slope

$$\mu(e) = (\mu_1, \mu_2) \in (\mathbb{Z}_{>0})^2$$

of the edge e in the tropical graph.

• Matching condition :

 $(u_+ \mod T_{\mu,\mathbb{C}})(w_+) = (u_- \mod T_{\mu,\mathbb{C}})(w_-)$ in $Z_{P_{\cap},\mathbb{C}}/T_{\mu,\mathbb{C}}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Matching condition :

 $(u_+ \mod T_{\mu,\mathbb{C}})(w_+) = (u_- \mod T_{\mu,\mathbb{C}})(w_-)$

in $Z_{P\cap,\mathbb{C}}/T_{\mu,\mathbb{C}}$.

Here

$$\mathbb{C}^{\times} \simeq T_{\mu,\mathbb{C}} \subset (\mathbb{C}^{\times})^2$$

is the sub-torus generated by the intersection multiplicity vector $\mu = (\mu_1, \mu_2) \in (\mathbb{Z}_+)^2$. $\dim_{\mathbb{C}}(T_{\mu,\mathbb{C}}) = 1$.

• Matching condition :

 $(u_+ \mod T_{\mu,\mathbb{C}})(w_+) = (u_- \mod T_{\mu,\mathbb{C}})(w_-)$

in $Z_{P\cap,\mathbb{C}}/T_{\mu,\mathbb{C}}$.

Here

$$\mathbb{C}^{\times} \simeq T_{\mu,\mathbb{C}} \subset (\mathbb{C}^{\times})^2$$

is the sub-torus generated by the intersection multiplicity vector $\mu = (\mu_1, \mu_2) \in (\mathbb{Z}_+)^2$. $\dim_{\mathbb{C}}(T_{\mu,\mathbb{C}}) = 1$.

• The trivial cylinder u_{triv} is a $T_{\mu,\mathbb{C}}$ -orbit.

• Matching condition :

 $(u_+ \mod T_{\mu,\mathbb{C}})(w_+) = (u_- \mod T_{\mu,\mathbb{C}})(w_-)$

in $Z_{P\cap,\mathbb{C}}/T_{\mu,\mathbb{C}}$.

• Here

$$\mathbb{C}^{\times} \simeq T_{\mu,\mathbb{C}} \subset (\mathbb{C}^{\times})^2$$

is the sub-torus generated by the intersection multiplicity vector $\mu = (\mu_1, \mu_2) \in (\mathbb{Z}_+)^2$. $\dim_{\mathbb{C}}(T_{\mu,\mathbb{C}}) = 1$.

• The trivial cylinder u_{triv} is a $T_{\mu,\mathbb{C}}$ -orbit.

Remark : The matching condition has codimension $\dim(X) - 2$. Therefore the presence of a node does not decrease the index of the map.

Tropical symmetry group

• Let Γ be the tropical graph of a broken map. The **tropical symmetry** group

 $T_{\mathrm{trop}}(\Gamma)$

acts on the target space of the broken map and preserves the matching condition at nodes.

Tropical symmetry group

• Let Γ be the tropical graph of a broken map. The **tropical symmetry** group

 $T_{\rm trop}(\Gamma)$

acts on the target space of the broken map and preserves the matching condition at nodes.

• Symmetries of the tropical graph are the infinitesimal generators of the tropical symmetry group. These are the ways of moving the vertices in Γ without changing the edge slope.

Theorem (Gromov convergence)

Given a sequence u_{ν} with tropical graph Γ with area $\leq E$, there is a subsequence that converges to a limit u with tropical graph Γ' , and there is an edge collapse morphism $\Gamma' \to \Gamma$. Further $ind(u) = ind(u_{\nu})$.

We say that there is an edge collapse morphism $\Gamma' \to \Gamma$ if

- Γ is obtained by collapsing edges in Γ' ,
- and the slopes of the uncollapsed edges are the same in Γ and Γ' .

Gromov topology on broken maps: edge collapse

 $\Gamma_1 \to \Gamma_0, \Gamma_2 \to \Gamma_0, \Gamma_3 \to \Gamma_0$ are edge collapse morphisms. In all graphs $\mathcal{T}(e) = (1, 1)$.

< 17 ▶

Gromov topology on broken maps: edge collapse

 $\Gamma_1 \to \Gamma_0, \Gamma_2 \to \Gamma_0, \Gamma_3 \to \Gamma_0$ are edge collapse morphisms. In all graphs $\mathcal{T}(e) = (1, 1)$.

Remark : For an edge collapse $\Gamma' \to \Gamma$, $\Gamma' \neq \Gamma \Longrightarrow$ $T_{\text{trop}}(\Gamma) \subsetneq T_{\text{trop}}(\Gamma').$

- 47 ▶

Gromov topology on broken maps: edge collapse

 $\Gamma_1 \to \Gamma_0, \Gamma_2 \to \Gamma_0, \Gamma_3 \to \Gamma_0$ are edge collapse morphisms. In all graphs $\mathcal{T}(e) = (1, 1)$.

Remark : For an edge collapse $\Gamma' \to \Gamma$, $\Gamma' \neq \Gamma \Longrightarrow$ $T_{\text{trop}}(\Gamma) \subsetneq T_{\text{trop}}(\Gamma').$

Corollary : In Gromov convergence, ind $(u_{\nu}) \leq 1$ implies that the limit has the same tropical type as u_{ν} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• $\widetilde{\mathcal{M}}_{\Gamma}(\mathcal{X}) :=$ moduli space of broken holomorphic disks with tropical graph Γ .

A (1) > A (1) > A (1) >

- $\mathcal{M}_{\Gamma}(\mathcal{X}) :=$ moduli space of broken holomorphic disks with tropical graph Γ .
- $\mathcal{M}_{\Gamma}(\mathcal{X}) := \widetilde{\mathcal{M}}_{\Gamma}/T_{\mathrm{trop}}(\Gamma).$

(E) < E)</p>

4 A 1

- *M*_Γ(*X*) := moduli space of broken holomorphic disks with tropical graph Γ.
- $\mathcal{M}_{\Gamma}(\mathcal{X}) := \widetilde{\mathcal{M}}_{\Gamma}/T_{\mathrm{trop}}(\Gamma).$
- $\mathcal{M}_d(\mathcal{X}) := \bigcup_{\Gamma} \mathcal{M}_{\Gamma}$, where the union is over all Γ with *d* boundary markings.

- $\widetilde{\mathcal{M}}_{\Gamma}(\mathcal{X}) :=$ moduli space of broken holomorphic disks with tropical graph Γ .
- $\mathcal{M}_{\Gamma}(\mathcal{X}) := \widetilde{\mathcal{M}}_{\Gamma}/T_{\mathrm{trop}}(\Gamma).$
- *M_d*(*X*) := ∪_Γ*M_Γ*, where the union is over all Γ with *d* boundary markings.

Conjecture

For generic perturbations, the space $\mathcal{M}_d(\mathcal{X})^{\leq E}$

- is compact,
- and is the coarse moduli space of a smooth Deligne-Mumford stack.
- In any connected component, generic points have a finite tropical symmetry group.
- For any tropical graph Γ, the moduli space M_Γ(X)^{<E} is a stratum of codimension dim(T_{trop,C}(Γ)) in M_d(X)^{<E}.

Gromov topology on broken maps : Observation

 Let M_Γ(X) ⊂ M_d^{≤E} be an *n*-dimensional component where Γ is rigid. Then there exists a sequence u_ν ∈ M_Γ(X) that converges to a broken map with *n*-dimensional tropical symmetry.

Gromov topology on broken maps : Observation

- Let M_Γ(X) ⊂ M_d^{≤E} be an *n*-dimensional component where Γ is rigid. Then there exists a sequence u_ν ∈ M_Γ(X) that converges to a broken map with *n*-dimensional tropical symmetry.
- Thus, the dimensions of the moduli space can be 'converted' to tropical symmetry by going towards an end of the moduli space in the right direction.

Table of Contents

2 Unobstructedness for Lagrangians

Degenerating matching conditions

• = • •

A D > A A P >
 A

Unobstructedness of Lagrangians : motivation

We recall the definition of Lagrangian intersection Floer cohomology.

- Let $L \subset (X, \omega)$ be a Lagrangian submanifold and let $\phi : X \to X$ be a 'small' Hamiltonian diffeomorphism such that *L* and $\phi(L)$ intersect transversely.
- Let CF(L) be a cochain complex generated by L ∩ φ(L) with differential given by a weighted count of holomorphic strips

$$d: CF(L) \to CF(L), \quad x \mapsto \sum_{y} \#(\mathcal{M}(x,y))_{0}y.$$

Here $\mathcal{M}(x, y)_0$ is the zero-dimensional component of the moduli space of holomorphic strips

 $u: \mathbb{R} \times [0,1] \to X$ with boundary in *L*, $\phi(L)$, and whose ends asymptote to *x*, *y*

Sushmita Venugopalan

In general $d^2 \neq 0$ because of disk bubbling. The boundary of one-dimensional components is as follows.

• A Lagrangian L is **unobstructed** if the boundary evaluation map

$$\operatorname{ev}_{z}: \left\{ u: \overbrace{\bullet}^{z} \to (X,L) \right\} \to L$$

on the space of rigid one-pointed disks is a submersion.

• Unobstructedness implies $d^2 = 0$, because the second and third terms cancel out.

- Let X be a toric symplectic manifold with a moment map $\Phi: X \to \mathfrak{t}^{\vee}$, $T \simeq (S^1)^n$.
- For any regular value $c \in \mathfrak{t}^{\vee}$,

$$L := \Phi^{-1}(c)$$

is a Lagrangian *T*-orbit.

• One way of obtaining the surjectivity of dev_z is to use the torus-invariant almost complex structure J_0 , and show that the space of index zero one-pointed J_0 -holomorphic disks is *T*-invariant.

- Let X be a toric symplectic manifold with a moment map $\Phi: X \to \mathfrak{t}^{\vee}$, $T \simeq (S^1)^n$.
- For any regular value $c \in \mathfrak{t}^{\vee}$,

$$L := \Phi^{-1}(c)$$

is a Lagrangian T-orbit.

- One way of obtaining the surjectivity of dev_z is to use the torus-invariant almost complex structure J_0 , and show that the space of index zero one-pointed J_0 -holomorphic disks is *T*-invariant.
- The approach fails if there are negative index J_0 -holomorphic spheres in the torus-invariant divisors (and therefore J_0 is not regular). In that case J_0 has to be perturbed, and we lose the *T*-invariance of the moduli space.

Since the bad spheres lie on torus-invariant divisors we 'cut away' these divisors. Thus we have one cut space X_{P_0} which is symplectomorphic to X, but with a 'smaller' symplectic form. All the torus-invariant divisors of X_{P_0} are relative divisors, so there are no spheres in these divisors.

Figure: There are no spheres in the relative divisors

The moduli space of broken disks is not T-invariant, because the almost complex structure is not the standard one in all pieces. So we proceed to eliminate the matching condition at nodes.

Sushmita	Venugopalan
----------	-------------

Table of Contents

2 Unobstructedness for Lagrangians

()

Degenerating the matching condition : single cut

Recall that in a single cut the matching condition is

$$u_+(w_+) = u_-(w_-)$$
 in *Y*,

where $Y := Z/S^1$ is the relative divisor.

Recall that in a single cut the matching condition is

$$u_+(w_+) = u_-(w_-)$$
 in *Y*,

where $Y := Z/S^1$ is the relative divisor.

The moduli space of broken maps is

$$\mathcal{M}(X_+) \times_Y \mathcal{M}(X_-)$$

where $ev_{\pm} : \mathcal{M}(X_{\pm}) \to Y$ is the evaluation map at the node.

The fibered product is homotopic to a product via a deformation by Morse flow. (Bourgeois et al, Charest-Woodward).

The fibered product is homotopic to a product via a deformation by Morse flow. (Bourgeois et al, Charest-Woodward).

Step 1 : For any $t \in \mathbb{R}$, there is a homotopy equivalence :

$$\mathcal{M}^{\mathrm{brok}}(\mathcal{X},L) \simeq \mathcal{M}^{t\text{-}\mathrm{def}}(\mathcal{X},L).$$

t-Deformed map

Matching condition :

$$u_+(w_+) = \phi_t^Y u_-(w_-)$$

 ϕ_t^Y : Time *t* gradient flow of a Morse function $H: Y \to \mathbb{R}$.

Step 2 : Taking limit $t \to \infty$, we get a homotopy equivalence

$$\mathcal{M}^{\mathrm{brok}}(\mathcal{X},L) \simeq \mathcal{M}^{\infty-\mathrm{def}}(\mathcal{X},L).$$

 ∞ -Deformed map

Matching condition :

 $u_+(w_+)$, $u_-(w_-)$ are connected by a broken flow line.

p is a critical point of $H: Y \to \mathbb{R}$

The moduli space of ∞ -deformed maps is a sum of products :

Multiple cuts are different

The Morse deformation approach fails in the case of multiple cuts because stable/unstable manifolds may be contained in relative divisors. Generically there are additional bubbles in the limit $t \to \infty$.

Multiple cuts are different

The Morse deformation approach fails in the case of multiple cuts because stable/unstable manifolds may be contained in relative divisors. Generically there are additional bubbles in the limit $t \to \infty$.

Incorrect picture

Multiple cuts are different

The Morse deformation approach fails in the case of multiple cuts because stable/unstable manifolds may be contained in relative divisors. Generically there are additional bubbles in the limit $t \to \infty$.

Tropical Fukaya Algebras, Part 2

Degenerating the matching condition : a remark about single cut

Remark : Suppose the separating hypersurface Y is a T-toric variety and a generic component of the moment map is a Morse function.

Degenerating the matching condition : a remark about single cut

Remark : Suppose the separating hypersurface *Y* is a *T*-toric variety and a generic component of the moment map is a Morse function.

Gradient flow for an S^1 -moment map :

Degenerating the matching condition : a remark about single cut

Remark : Suppose the separating hypersurface *Y* is a *T*-toric variety and a generic component of the moment map is a Morse function.

Gradient flow for an S^1 -moment map :

Then there is a decomposition $T_{\mathbb{C}} = T_{\mathbb{C}}^+ \times T_{\mathbb{C}}^-$ such that the evaluation cycle $[ev_{w\pm}]$ intersects a $T_{\mathbb{C}}^{\pm}$ -orbit transversely.

• Recall that the matching condition at the node is of the form

$$(u_+ \mod T_{\mu,\mathbb{C}})(w_+) = (u_- \mod T_{\mu,\mathbb{C}})(w_-)$$

in $(\mathbb{C}^{\times})^n/T_{\mu,\mathbb{C}}$, where $\mu \in (\mathbb{Z}_{\geq 0})^n$ is the intersection multiplicity vector.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Recall that the matching condition at the node is of the form

$$(u_+ \mod T_{\mu,\mathbb{C}})(w_+) = (u_- \mod T_{\mu,\mathbb{C}})(w_-)$$

in $(\mathbb{C}^{\times})^n/T_{\mu,\mathbb{C}}$, where $\mu \in (\mathbb{Z}_{\geq 0})^n$ is the intersection multiplicity vector.

• A **deformed map** is a version of the broken map where the matching condition is replaced by

$$(u_+ \mod T_{\mu,\mathbb{C}})(w_+) = \tau(u_- \mod T_{\mu,\mathbb{C}})(w_-)$$

for some $\tau \in (\mathbb{C}^{\times})^n/T_{\mu,\mathbb{C}}$.

• Let $\tau_{\nu} \in (\mathbb{C}^{\times})^n / T_{\mu,\mathbb{C}}$ be a sequence of deformation parameters, $\tau_{\nu} \to \infty$, and let u_{ν} be a τ_{ν} -deformed map.

- Let $\tau_{\nu} \in (\mathbb{C}^{\times})^n / T_{\mu,\mathbb{C}}$ be a sequence of deformation parameters, $\tau_{\nu} \to \infty$, and let u_{ν} be a τ_{ν} -deformed map.
- We prove that the sequence u_{ν} converges to a **split map**.
- A split map is a version of a broken map with **no matching condition on nodes**, but with a **non-trivial tropical symmetry group**. In particular, the codimension of the matching condition is equal to the dimension of the tropical symmetry group.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Result

The moduli space of split disks modulo the action of the tropical symmetry group is homotopy equivalent to the moduli space of broken disks:

 $\mathcal{M}^{\mathrm{split}}(\mathcal{X}, L)/T_{\mathrm{trop}, \mathbb{C}} \simeq \mathcal{M}^{\mathrm{brok}}(\mathcal{X}, L).$

Result

The moduli space of split disks modulo the action of the tropical symmetry group is homotopy equivalent to the moduli space of broken disks:

 $\mathcal{M}^{\mathrm{split}}(\mathcal{X},L)/T_{\mathrm{trop},\mathbb{C}}\simeq \mathcal{M}^{\mathrm{brok}}(\mathcal{X},L).$

The composition maps of the tropical Fukaya algebra

 $CF_{\mathrm{trop}}(\mathcal{X}, L)$

are given by counts of symmetry orbits of split disks.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Result

The moduli space of split disks modulo the action of the tropical symmetry group is homotopy equivalent to the moduli space of broken disks:

 $\mathcal{M}^{\mathrm{split}}(\mathcal{X},L)/T_{\mathrm{trop},\mathbb{C}}\simeq \mathcal{M}^{\mathrm{brok}}(\mathcal{X},L).$

The composition maps of the tropical Fukaya algebra

 $CF_{\mathrm{trop}}(\mathcal{X},L)$

are given by counts of symmetry orbits of split disks.

Theorem (VW)

There is a homotopy equivalence $CF_{trop}(\mathcal{X}, L) \simeq CF_{brok}(\mathcal{X}, L)$.

We return to the example of a toric variety.

• Let *X* be a toric variety. Neighborhoods of torus-invariant divisors are separated using cuts.

We return to the example of a toric variety.

- Let *X* be a toric variety. Neighborhoods of torus-invariant divisors are separated using cuts.
- There is one cut space X_{P_0} which is diffeomorphic to X, but with a 'smaller' symplectic form. All the torus-invariant divisors of X_{P_0} are relative divisors.

Sushmita Venugopalan

We return to the example of a toric variety.

- Let *X* be a toric variety. Neighborhoods of torus-invariant divisors are separated using cuts.
- There is one cut space X_{P_0} which is diffeomorphic to X, but with a 'smaller' symplectic form. All the torus-invariant divisors of X_{P_0} are relative divisors.
- The Lagrangian $L \subset X_{P_0}$ is a torus-orbit.

Sushmita Venugopalan

Tropical Fukaya Algebras, Part 2

Broken map $u: C \to \mathcal{X}$ of Maslov index 2 Tropical graph

< 17 ▶

A τ -deformed $u_{\tau} = (u_+, u_-^{\tau})$ disk in \mathcal{X} :

As $\tau_{\nu} \to \infty$, the sequence of τ_{ν} -deformed maps converge to a map with no matching condition on the node.

< A >

Example : Split disk

Tropical graph

• Codimension of matching condition = Dimension of tropical symmetry group of u_{∞} =2.

< < >> < <</>

< ∃ >

Example : Split disk

Tropical graph

- Codimension of matching condition = Dimension of tropical symmetry group of $u_{\infty}=2$.
- Observe : we have chosen the direction in which deformation parameters go to infinity as
 η := π[⊥]_{μ_e}(1,0) ∈ ℝ²/⟨μ_e⟩.
 Here π[⊥]_{μ_e} : ℝ² → ℝ²/⟨μ_e⟩ is the projection map.

Sushmita Venugopalan

Direction of approach for split maps

If the deformation parameters approached infinity in the opposite direction, i.e.

$$\pi_{\mu_e}^{\perp}(-(1,0)) \in \mathbb{R}^2/\langle \mu_e \rangle$$

then as $\tau_{\nu} \rightarrow \infty$ we would obtain the following different limit map :

Slope of *e*:

$$\mu_e = (0, 1) \in \mathbb{Z}^2$$

Direction of approach for split maps

If the deformation parameters approached infinity in the opposite direction, i.e.

$$\pi_{\mu_e}^{\perp}(-(1,0)) \in \mathbb{R}^2/\langle \mu_e \rangle$$

then as $\tau_{\nu} \rightarrow \infty$ we would obtain the following different limit map :

To prevent an over-count we should not count both this map, and the one in the previous page. Therefore the **direction of approach** η is part of the datum of a split map, which is similar to a choice of Morse function.

Sushmita Venugopalan

Tropical Fukaya Algebras, Part 2

November 23, 2020 37/46

Example : Split disk, continued

Slope of *e*: $\mu_e = (0, 1) \in \mathbb{Z}^2$

• Direction of approach = $\eta := \pi_{\mu_e}^{\perp}(1,0) \in \mathbb{R}^2/\langle \mu_e \rangle$.

Example : Split disk, continued

Slope of *e*:

$$\mu_e = (0, 1) \in \mathbb{Z}^2$$

- Direction of approach = $\eta := \pi_{\mu_e}^{\perp}(1,0) \in \mathbb{R}^2/\langle \mu_e \rangle$.
- The set of possible discrepancies of tropical weights across e is

Discrepancy cone
$$\mathcal{W} := \pi_{\mu_e}^{\perp}(\{\mathcal{T}(v_+) - \mathcal{T}(v_-)\})$$

$$= \pi_{\mu_e}^{\perp}(\{(1,0)t : t \ge 0\}) \subset \mathbb{R}^2/\mu_e.$$

Example : Split disk, continued

Slope of *e*: $\mu_e = (0, 1) \in \mathbb{Z}^2$

- Direction of approach = $\eta := \pi_{\mu_e}^{\perp}(1,0) \in \mathbb{R}^2/\langle \mu_e \rangle$.
- The set of possible discrepancies of tropical weights across *e* is

Discrepancy cone
$$\mathcal{W} := \pi_{\mu_e}^{\perp}(\{\mathcal{T}(v_+) - \mathcal{T}(v_-)\})$$

$$= \pi_{\mu_e}^{\perp}(\{(1,0)t : t \ge 0\}) \subset \mathbb{R}^2/\mu_e.$$

• Remark : \mathcal{W} is a cone containing η .

The remark is true in general :

Result

If a sequence u_{ν} of $\nu\eta$ -deformed maps converge to u as $\nu \to \infty$. Then the set of discrepancies W_u is a cone containing η .

Definition of a split disk

Definition

Given a direction of approach $\eta \in \mathbb{R}^n/\mu_e$, a split disk $u: C \to \mathcal{X}$

- is a version of a broken map with no matching condition on the edge *e*,
- and for which the set of discrepancies of tropical weights across e

(Cone condition) $\pi_{\mu_e}^{\perp}(\{\mathcal{T}(v_+) - \mathcal{T}(v_-)\}) \subset \mathbb{R}^n/\mu_e$

is a top-dimensional cone containing η .

Definition of a split disk

Definition

Given a direction of approach $\eta \in \mathbb{R}^n/\mu_e$, a split disk $u: C \to \mathcal{X}$

- is a version of a broken map with no matching condition on the edge *e*,
- and for which the set of discrepancies of tropical weights across e

(Cone condition)
$$\pi_{\mu_e}^{\perp}(\{\mathcal{T}(v_+) - \mathcal{T}(v_-)\}) \subset \mathbb{R}^n/\mu_e$$

is a top-dimensional cone containing η .

Dimension of discrepancy cone $\times 2$ = dimension of tropical symmetry group.

Definition of a split disk

Definition

Given a direction of approach $\eta \in \mathbb{R}^n/\mu_e$, a split disk $u: C \to \mathcal{X}$

- is a version of a broken map with no matching condition on the edge *e*,
- and for which the set of discrepancies of tropical weights across e

(Cone condition)
$$\pi_{\mu_e}^{\perp}(\{\mathcal{T}(v_+) - \mathcal{T}(v_-)\}) \subset \mathbb{R}^n/\mu_e$$

is a top-dimensional cone containing η .

Dimension of discrepancy cone $\times 2$ = dimension of tropical symmetry group.

Definition of a split disk : Consequences of cone condition

Discrepancy cone is top-dimensional \implies

• Dimension of tropical symmetry group=codimension of edge matching condition.

Definition of a split disk : Consequences of cone condition

Discrepancy cone is top-dimensional \implies

- Dimension of tropical symmetry group=codimension of edge matching condition.
- For a split map u, for any t ∈ T_C/T_{μe,C}, the tropical symmetry orbit of u contains a t-deformed map.
Definition of a split disk : Consequences of cone condition

Discrepancy cone is top-dimensional \implies

- Dimension of tropical symmetry group=codimension of edge matching condition.
- For a split map u, for any t ∈ T_C/T_{μe,C}, the tropical symmetry orbit of u contains a t-deformed map.

Tropical graph

Sushmita	Venugopalan
----------	-------------

Example of split map : 2 dimensions

Some of the types that may occur in the limit

< < >> < <</>

< ∃⇒

Example of split map : 2 dimensions

Some of the types that may occur in the limit

In both these examples dim W = 1, and therefore it is a top-dimensional cone in $\mathbb{R}^2/\langle \mu_e \rangle$.

Sushmita Venugopalan

Tropical Fukaya Algebras, Part 2

November 23, 2020 42/46

Suppose we deform maps modelled on the graph Γ in the direction $\eta := \pi_{(1,1,1)}^{\perp}(2,1,0) \in \mathbb{R}^3/\langle (1,1,1) \rangle.$

Suppose we deform maps modelled on the graph Γ in the direction $\eta := \pi_{(1,1,1)}^{\perp}(2,1,0) \in \mathbb{R}^3/\langle (1,1,1) \rangle.$

A possible type of limit map :

Suppose we deform maps modelled on the graph Γ in the direction $\eta := \pi_{(1,1,1)}^{\perp}(2,1,0) \in \mathbb{R}^3/\langle (1,1,1) \rangle.$

 $\begin{array}{c}
\nu_{-} & (1, 1, 1) \\
\mu_{e} & \mu_{e} = -(1, 1, 1) \\
\nu_{+} & (0, 0, 0) \\
\nu_{-} & (1, 1, 1) \\
\mu_{e} & \nu_{+} \\
\tilde{\Gamma} \\
\end{array}$

A possible type of limit map :

 The discrepancy cone
 W = π[⊥]_(1,1,1)({(2,1,0)t : t ≥ 0}) ⊂ ℝ³/⟨μ(e)⟩
 is not top-dimensional. Therefore the deformation may produce a limit
 that is not a split map.

Suppose we deform maps modelled on the graph Γ in the direction $\eta := \pi_{(1,1,1)}^{\perp}(2,1,0) \in \mathbb{R}^3/\langle (1,1,1) \rangle.$

A possible type of limit map :

- The discrepancy cone
 W = π[⊥]_(1,1,1)({(2,1,0)t : t ≥ 0}) ⊂ ℝ³/⟨μ(e)⟩
 is not top-dimensional. Therefore the deformation may produce a limit
 that is not a split map.
- To get around this issue, we take the direction of approach to be 'generic'.

Sushmita Venugopalan

November 23, 2020 43/46

Deforming in a generic direction

Let us deform maps modelled on the graph Γ in the direction $\eta := \pi_{(1,1,1)}^{\perp}(r, 1, 0) \in \mathbb{R}^3 / \langle (1, 1, 1) \rangle$, where 1 < r < 2 is a fixed irrational number.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Deforming in a generic direction

Let us deform maps modelled on the graph Γ in the direction $\eta := \pi_{(1,1,1)}^{\perp}(r, 1, 0) \in \mathbb{R}^3 / \langle (1, 1, 1) \rangle$, where 1 < r < 2 is a fixed irrational number. One of the possible limit maps is \tilde{u} modelled on the tropical graph is $\tilde{\Gamma}$:

The discrepancy cone is $\mathcal{W} = \{\mathcal{T}(v_+) - \mathcal{T}(v_-)\} = \{(2, 1, 0)t_1 + (1, 1, 0)t_2 : t_1, t_2 \ge 0\},\$ which contains the direction of deformation η , and is top-dimensional in $\mathbb{R}^3/\langle (1, 1, 1) \rangle.$

Theorem (VW)

Suppose \mathcal{X} is a broken manifold. Let $X_{P_0} \subset \mathcal{X}$ be a toric component. That is, the tropical moment map is an honest moment map on X_{P_0} . For any Lagrangian torus orbit $L \subset X_{P_0}$, $CF_{brok}(\mathcal{X}, L)$ is unobstructed.

Unobstructedness of toric Lagrangians proved by Fukaya-Oh-Ohta-Ono is a corollary, by using the multiple cut described earlier :

Theorem (VW)

Suppose \mathcal{X} is a broken manifold. Let $X_{P_0} \subset \mathcal{X}$ be a toric component. That is, the tropical moment map is an honest moment map on X_{P_0} . For any Lagrangian torus orbit $L \subset X_{P_0}$, $CF_{brok}(\mathcal{X}, L)$ is unobstructed.

Unobstructedness of toric Lagrangians proved by Fukaya-Oh-Ohta-Ono is a corollary, by using the multiple cut described earlier :

Recall the issue in the unobstructedness proof was that the moduli space of broken disks is not *T*-invariant.

A 10

• = • •

Recall the issue in the unobstructedness proof was that the moduli space of broken disks is not *T*-invariant.

For a split map u, the cone condition implies that for any $t \in T_{\mathbb{C}}$, the tropical symmetry orbit of u contains a t-deformed map.

Recall the issue in the unobstructedness proof was that the moduli space of broken disks is not *T*-invariant.

For a split map u, the cone condition implies that for any $t \in T_{\mathbb{C}}$, the tropical symmetry orbit of u contains a t-deformed map.

Consequently, in a split map, the moduli space of the disk part is invariant under the action of the compact torus, leading to unobstructedness.