Tropical Fukaya Algebras, Part 2

Sushmita Venugopalan

November 23, 2020
arXiv:2004.14314. Joint work with Chris Woodward.

Table of Contents

(2) Unobstructedness for Lagrangians

(3) Degenerating matching conditions

Broken maps and broken manifolds

Theorem

Broken maps of index zero in $\mathcal{X} \xrightarrow{\text { bijective }}$ Unbroken maps of index zero in a neck-stretched manifold $\left(X, J_{\nu}\right)$ for large enough ν.

Broken maps and broken manifolds

Theorem

Broken maps of index zero in $\mathcal{X} \xrightarrow{\text { bijective }}$ Unbroken maps of index zero in a neck-stretched manifold $\left(X, J_{\nu}\right)$ for large enough ν.

- Broken maps live in a broken manifold. A broken manifold consists of cut spaces

Broken maps and broken manifolds

and neck pieces, which are relative submanifolds thickened into toric fibrations.

Broken maps and broken manifolds

Pieces of the broken manifold have natural actions of complex tori:

Symmetry group on $X_{\bar{P}_{\cap}}$
$=T_{P_{\cap}}:=\left(\mathbb{C}^{\times}\right)^{2}$
Symmetry group on $X_{\bar{P}_{i j}}$
$=T_{P_{i}}:=\mathbb{C}^{\times}$

Symmetry group on $X_{P_{i}}$
$=T_{P_{i}}:=\{\mathrm{Id}\}$

Broken maps and broken manifolds

A broken map consists of

- map components in pieces of a broken manifold that satisfy a matching condition at nodes,
- and a tropical graph whose edge slopes are given by intersection multiplicities at nodes.

Broken map : Example

Broken map : Example

At the node w the intersection multiplicity with relative divisors on both lifts of the node w are equal to the slope

$$
\mu(e)=\left(\mu_{1}, \mu_{2}\right) \in\left(\mathbb{Z}_{>0}\right)^{2}
$$

of the edge e in the tropical graph.

$$
\mu(e):=\text { Slope of } e=\left(\mu_{1}, \mu_{2}\right)
$$

Broken map : Matching condition

- Matching condition :

$$
\begin{aligned}
& \left(u_{+} \bmod T_{\mu, \mathbb{C}}\right)\left(w_{+}\right)=\left(u_{-} \bmod T_{\mu, \mathbb{C}}\right)\left(w_{-}\right) \\
& \text {in } Z_{P_{\cap}, \mathbb{C}} / T_{\mu, \mathbb{C}}
\end{aligned}
$$

Broken map : Matching condition

- Matching condition :

$$
\left(u_{+} \bmod T_{\mu, \mathbb{C}}\right)\left(w_{+}\right)=\left(u_{-} \quad \bmod T_{\mu, \mathbb{C}}\right)\left(w_{-}\right)
$$

in $Z_{P_{\cap}, \mathbb{C}} / T_{\mu, \mathbb{C}}$.

- Here

$$
\mathbb{C}^{\times} \simeq T_{\mu, \mathbb{C}} \subset\left(\mathbb{C}^{\times}\right)^{2}
$$

is the sub-torus generated by the intersection multiplicity vector $\mu=\left(\mu_{1}, \mu_{2}\right) \in\left(\mathbb{Z}_{+}\right)^{2}$. $\operatorname{dim}_{\mathbb{C}}\left(T_{\mu, \mathbb{C}}\right)=1$.

Broken map : Matching condition

- Matching condition :

$$
\left(u_{+} \bmod T_{\mu, \mathbb{C}}\right)\left(w_{+}\right)=\left(u_{-} \quad \bmod T_{\mu, \mathbb{C}}\right)\left(w_{-}\right)
$$

$$
\text { in } Z_{P_{\cap}, \mathbb{C}} / T_{\mu, \mathbb{C}}
$$

- Here

$$
\mathbb{C}^{\times} \simeq T_{\mu, \mathbb{C}} \subset\left(\mathbb{C}^{\times}\right)^{2}
$$

is the sub-torus generated by the intersection multiplicity vector $\mu=\left(\mu_{1}, \mu_{2}\right) \in\left(\mathbb{Z}_{+}\right)^{2}$. $\operatorname{dim}_{\mathbb{C}}\left(T_{\mu, \mathbb{C}}\right)=1$.

- The trivial cylinder $u_{\text {triv }}$ is a $T_{\mu, \mathbb{C} \text {-orbit. }}$

Broken map : Matching condition

- Matching condition :

$$
\left(u_{+} \bmod T_{\mu, \mathbb{C}}\right)\left(w_{+}\right)=\left(u_{-} \bmod T_{\mu, \mathbb{C}}\right)\left(w_{-}\right)
$$

$$
\text { in } Z_{P_{\cap}, \mathbb{C}} / T_{\mu, \mathbb{C}}
$$

- Here

$$
\mathbb{C}^{\times} \simeq T_{\mu, \mathbb{C}} \subset\left(\mathbb{C}^{\times}\right)^{2}
$$

is the sub-torus generated by the intersection multiplicity vector $\mu=\left(\mu_{1}, \mu_{2}\right) \in\left(\mathbb{Z}_{+}\right)^{2}$. $\operatorname{dim}_{\mathbb{C}}\left(T_{\mu, \mathbb{C}}\right)=1$.

- The trivial cylinder $u_{t r i v}$ is a $T_{\mu, \mathbb{C}}$-orbit. Remark: The matching condition has codimension $\operatorname{dim}(X)-2$. Therefore the presence of a node does not decrease the index of the map.

Tropical symmetry group

- Let Γ be the tropical graph of a broken map. The tropical symmetry group

$$
T_{\text {trop }}(\Gamma)
$$

acts on the target space of the broken map and preserves the matching condition at nodes.

Tropical symmetry group

- Let Γ be the tropical graph of a broken map. The tropical symmetry group

$$
T_{\text {trop }}(\Gamma)
$$

acts on the target space of the broken map and preserves the matching condition at nodes.

- Symmetries of the tropical graph are the infinitesimal generators of the tropical symmetry group. These are the ways of moving the vertices in Γ without changing the edge slope.

A rigid tropical graph: $T_{\text {trop }}(\Gamma)$ is finite

$$
T_{\text {trop }}(\Gamma)=\mathbb{C}^{\times}
$$

Gromov topology on broken maps

Theorem (Gromov convergence)

Given a sequence u_{ν} with tropical graph Γ with area $\leq E$, there is a subsequence that converges to a limit u with tropical graph Γ^{\prime}, and there is an edge collapse morphism $\Gamma^{\prime} \rightarrow \Gamma$. Further $\operatorname{ind}(u)=\operatorname{ind}\left(u_{\nu}\right)$.

We say that there is an edge collapse morphism $\Gamma^{\prime} \rightarrow \Gamma$ if

- Γ is obtained by collapsing edges in Γ^{\prime},
- and the slopes of the uncollapsed edges are the same in Γ and Γ^{\prime}.

Gromov topology on broken maps: edge collapse

$\Gamma_{1} \rightarrow \Gamma_{0}, \Gamma_{2} \rightarrow \Gamma_{0}, \Gamma_{3} \rightarrow \Gamma_{0}$ are edge collapse morphisms. In all graphs $\mathcal{T}(e)=(1,1)$.

Gromov topology on broken maps: edge collapse

$\Gamma_{1} \rightarrow \Gamma_{0}, \Gamma_{2} \rightarrow \Gamma_{0}, \Gamma_{3} \rightarrow \Gamma_{0}$ are edge collapse morphisms. In all graphs $\mathcal{T}(e)=(1,1)$.

Remark : For an edge collapse $\Gamma^{\prime} \rightarrow \Gamma$, $\Gamma^{\prime} \neq \Gamma \Longrightarrow$ $T_{\text {trop }}(\Gamma) \subsetneq T_{\text {trop }}\left(\Gamma^{\prime}\right)$.

Gromov topology on broken maps: edge collapse

$\Gamma_{1} \rightarrow \Gamma_{0}, \Gamma_{2} \rightarrow \Gamma_{0}, \Gamma_{3} \rightarrow \Gamma_{0}$ are edge collapse morphisms. In all graphs $\mathcal{T}(e)=(1,1)$.

Remark : For an edge collapse $\Gamma^{\prime} \rightarrow \Gamma$, $\Gamma^{\prime} \neq \Gamma \Longrightarrow$
$T_{\text {trop }}(\Gamma) \subsetneq T_{\text {trop }}\left(\Gamma^{\prime}\right)$.
Corollary: In Gromov convergence, $\operatorname{ind}\left(u_{\nu}\right) \leq 1$ implies that the limit has the same tropical type as u_{ν}.

Gromov topology on broken maps

- $\widetilde{\mathcal{M}}_{\Gamma}(\mathcal{X}):=$ moduli space of broken holomorphic disks with tropical graph Γ.

Gromov topology on broken maps

- $\widetilde{\mathcal{M}}_{\Gamma}(\mathcal{X}):=$ moduli space of broken holomorphic disks with tropical graph Γ.
- $\mathcal{M}_{\Gamma}(\mathcal{X}):=\widetilde{\mathcal{M}}_{\Gamma} / T_{\text {trop }}(\Gamma)$.

Gromov topology on broken maps

- $\widetilde{\mathcal{M}}_{\Gamma}(\mathcal{X}):=$ moduli space of broken holomorphic disks with tropical graph Γ.
- $\mathcal{M}_{\Gamma}(\mathcal{X}):=\widetilde{\mathcal{M}}_{\Gamma} / T_{\text {trop }}(\Gamma)$.
- $\mathcal{M}_{d}(\mathcal{X}):=\cup_{\Gamma} \mathcal{M}_{\Gamma}$, where the union is over all Γ with d boundary markings.

Gromov topology on broken maps

- $\widetilde{\mathcal{M}}_{\Gamma}(\mathcal{X}):=$ moduli space of broken holomorphic disks with tropical graph Γ.
- $\mathcal{M}_{\Gamma}(\mathcal{X}):=\widetilde{\mathcal{M}}_{\Gamma} / T_{\text {trop }}(\Gamma)$.
- $\mathcal{M}_{d}(\mathcal{X}):=\cup_{\Gamma} \mathcal{M}_{\Gamma}$, where the union is over all Γ with d boundary markings.

Conjecture

For generic perturbations, the space $\mathcal{M}_{d}(\mathcal{X})^{<E}$

- is compact,
- and is the coarse moduli space of a smooth Deligne-Mumford stack.
- In any connected component, generic points have a finite tropical symmetry group.
- For any tropical graph Γ, the moduli space $\mathcal{M}_{\Gamma}(\mathcal{X})^{<E}$ is a stratum of codimension $\operatorname{dim}\left(T_{\text {trop }, \mathbb{C}}(\Gamma)\right)$ in $\mathcal{M}_{d}(\mathcal{X})^{<E}$.

Gromov topology on broken maps : Observation

- Let $\mathcal{M}_{\Gamma}(\mathcal{X}) \subset \mathcal{M}_{d}^{\leq E}$ be an n-dimensional component where Γ is rigid. Then there exists a sequence $u_{\nu} \in \mathcal{M}_{\Gamma}(\mathcal{X})$ that converges to a broken map with n-dimensional tropical symmetry.

Gromov topology on broken maps : Observation

- Let $\mathcal{M}_{\Gamma}(\mathcal{X}) \subset \mathcal{M}_{d}^{\leq E}$ be an n-dimensional component where Γ is rigid. Then there exists a sequence $u_{\nu} \in \mathcal{M}_{\Gamma}(\mathcal{X})$ that converges to a broken map with n-dimensional tropical symmetry.
- Thus, the dimensions of the moduli space can be 'converted' to tropical symmetry by going towards an end of the moduli space in the right direction.

Table of Contents

(1) Recall

(2) Unobstructedness for Lagrangians

3 Degenerating matching conditions

Unobstructedness of Lagrangians : motivation

We recall the definition of Lagrangian intersection Floer cohomology.

- Let $L \subset(X, \omega)$ be a Lagrangian submanifold and let $\phi: X \rightarrow X$ be a 'small' Hamiltonian diffeomorphism such that L and $\phi(L)$ intersect transversely.
- Let $C F(L)$ be a cochain complex generated by $L \cap \phi(L)$ with differential given by a weighted count of holomorphic strips

$$
d: C F(L) \rightarrow C F(L), \quad x \mapsto \sum_{y} \#(\mathcal{M}(x, y))_{0} y .
$$

Here $\mathcal{M}(x, y)_{0}$ is the zero-dimensional component of the moduli space of holomorphic strips

$u: \mathbb{R} \times[0,1] \rightarrow X$ with boundary in $L, \phi(L)$, and whose ends asymptote to x, y

Unobstructedness of Lagrangians : motivation

In general $d^{2} \neq 0$ because of disk bubbling. The boundary of one-dimensional components is as follows.

Unobstructedness of Lagrangians

- A Lagrangian L is unobstructed if the boundary evaluation map

$$
\mathrm{ev}_{z}:\{u: \sim \rightarrow(X, L)\} \rightarrow L
$$

on the space of rigid one-pointed disks is a submersion.

- Unobstructedness implies $d^{2}=0$, because the second and third terms cancel out.

Unobstructedness of Lagrangians : the toric case

- Let X be a toric symplectic manifold with a moment map $\Phi: X \rightarrow \mathfrak{t}^{\vee}$, $T \simeq\left(S^{1}\right)^{n}$.
- For any regular value $c \in \mathfrak{t}^{\vee}$,

$$
L:=\Phi^{-1}(c)
$$

is a Lagrangian T-orbit.

- One way of obtaining the surjectivity of $d \mathrm{ev}_{z}$ is to use the torus-invariant almost complex structure J_{0}, and show that the space of index zero one-pointed J_{0}-holomorphic disks is T-invariant.

Unobstructedness of Lagrangians : the toric case

- Let X be a toric symplectic manifold with a moment map $\Phi: X \rightarrow \mathfrak{t}^{\vee}$, $T \simeq\left(S^{1}\right)^{n}$.
- For any regular value $c \in \mathfrak{t}^{\vee}$,

$$
L:=\Phi^{-1}(c)
$$

is a Lagrangian T-orbit.

- One way of obtaining the surjectivity of $d \mathrm{ev}_{z}$ is to use the torus-invariant almost complex structure J_{0}, and show that the space of index zero one-pointed J_{0}-holomorphic disks is T-invariant.
- The approach fails if there are negative index J_{0}-holomorphic spheres in the torus-invariant divisors (and therefore J_{0} is not regular). In that case J_{0} has to be perturbed, and we lose the T-invariance of the moduli space.

Unobstructedness of Lagrangians : the toric case

Since the bad spheres lie on torus-invariant divisors we 'cut away' these divisors. Thus we have one cut space $X_{P_{0}}$ which is symplectomorphic to X, but with a 'smaller' symplectic form. All the torus-invariant divisors of $X_{P_{0}}$ are relative divisors, so there are no spheres in these divisors.

Unobstructedness of Lagrangians : the toric case

Figure: There are no spheres in the relative divisors

Unobstructedness of Lagrangians : the toric case

The moduli space of broken disks is not T-invariant, because the almost complex structure is not the standard one in all pieces. So we proceed to eliminate the matching condition at nodes.

Table of Contents

(1) Recall

(2) Unobstructedness for Lagrangians

(3) Degenerating matching conditions

Degenerating the matching condition : single cut

Recall that in a single cut the matching condition is

$$
u_{+}\left(w_{+}\right)=u_{-}\left(w_{-}\right) \quad \text { in } Y,
$$

where $Y:=Z / S^{1}$ is the relative divisor.

Degenerating the matching condition : single cut

Recall that in a single cut the matching condition is

$$
u_{+}\left(w_{+}\right)=u_{-}\left(w_{-}\right) \quad \text { in } Y,
$$

where $Y:=Z / S^{1}$ is the relative divisor.
The moduli space of broken maps is

$$
\mathcal{M}\left(X_{+}\right) \times_{Y} \mathcal{M}\left(X_{-}\right)
$$

where $\mathrm{ev}_{ \pm}: \mathcal{M}\left(X_{ \pm}\right) \rightarrow Y$ is the evaluation map at the node.

Degenerating the matching condition : single cut

The fibered product is homotopic to a product via a deformation by Morse flow. (Bourgeois et al, Charest-Woodward).

Degenerating the matching condition : single cut

The fibered product is homotopic to a product via a deformation by Morse flow. (Bourgeois et al, Charest-Woodward). Step $1:$ For any $t \in \mathbb{R}$, there is a homotopy equivalence :

$$
\mathcal{M}^{\text {brok }}(\mathcal{X}, L) \simeq \mathcal{M}^{t-\operatorname{def}}(\mathcal{X}, L)
$$

t-Deformed map

Matching condition :

$$
u_{+}\left(w_{+}\right)=\phi_{t}^{Y} u_{-}\left(w_{-}\right)
$$

ϕ_{t}^{Y} : Time t gradient flow
of a Morse function $H: Y \rightarrow \mathbb{R}$.

Degenerating the matching condition : single cut

Step 2 : Taking limit $t \rightarrow \infty$, we get a homotopy equivalence

$$
\mathcal{M}^{\text {brok }}(\mathcal{X}, L) \simeq \mathcal{M}^{\infty-\operatorname{def}}(\mathcal{X}, L)
$$

∞-Deformed map

Matching condition :
$u_{+}\left(w_{+}\right), u_{-}\left(w_{-}\right)$are connected by a broken flow line.
p is a critical point of $H: Y \rightarrow \mathbb{R}$

Degenerating the matching condition : single cut

The moduli space of ∞-deformed maps is a sum of products :

Multiple cuts are different

The Morse deformation approach fails in the case of multiple cuts because stable/unstable manifolds may be contained in relative divisors. Generically there are additional bubbles in the limit $t \rightarrow \infty$.

Multiple cuts are different

The Morse deformation approach fails in the case of multiple cuts because stable/unstable manifolds may be contained in relative divisors. Generically there are additional bubbles in the limit $t \rightarrow \infty$.

Incorrect picture

Multiple cuts are different

The Morse deformation approach fails in the case of multiple cuts because stable/unstable manifolds may be contained in relative divisors. Generically there are additional bubbles in the limit $t \rightarrow \infty$.

Incorrect picture

Correct picture

Degenerating the matching condition : a remark about single cut

Remark : Suppose the separating hypersurface Y is a T-toric variety and a generic component of the moment map is a Morse function.

Degenerating the matching condition : a remark about single cut

Remark : Suppose the separating hypersurface Y is a T-toric variety and a generic component of the moment map is a Morse function.

Gradient flow for an S^{1}-moment map :

Degenerating the matching condition : a remark about single cut

Remark : Suppose the separating hypersurface Y is a T-toric variety and a generic component of the moment map is a Morse function.

Gradient flow for an S^{1}-moment map :

Then there is a decomposition $T_{\mathbb{C}}=T_{\mathbb{C}}^{+} \times T_{\mathbb{C}}^{-}$such that the evaluation cycle $\left[\mathrm{ev}_{w_{ \pm}}\right]$ intersects a $T_{\mathbb{C}}^{ \pm}$-orbit transversely.

Towards tropical Fukaya algebra : degenerating the matching condition at nodes

- Recall that the matching condition at the node is of the form

$$
\left(u_{+} \bmod T_{\mu, \mathbb{C}}\right)\left(w_{+}\right)=\left(u_{-} \quad \bmod T_{\mu, \mathbb{C}}\right)\left(w_{-}\right)
$$

in $\left(\mathbb{C}^{\times}\right)^{n} / T_{\mu, \mathbb{C}}$, where $\mu \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$ is the intersection multiplicity vector.

Towards tropical Fukaya algebra : degenerating the matching condition at nodes

- Recall that the matching condition at the node is of the form

$$
\left(u_{+} \bmod T_{\mu, \mathbb{C}}\right)\left(w_{+}\right)=\left(u_{-} \quad \bmod T_{\mu, \mathbb{C}}\right)\left(w_{-}\right)
$$

in $\left(\mathbb{C}^{\times}\right)^{n} / T_{\mu, \mathbb{C}}$, where $\mu \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$ is the intersection multiplicity vector.

- A deformed map is a version of the broken map where the matching condition is replaced by

$$
\left(u_{+} \quad \bmod T_{\mu, \mathbb{C}}\right)\left(w_{+}\right)=\tau\left(u_{-} \quad \bmod T_{\mu, \mathbb{C}}\right)\left(w_{-}\right)
$$

for some $\tau \in\left(\mathbb{C}^{\times}\right)^{n} / T_{\mu, \mathbb{C}}$.

Towards tropical Fukaya algebra : degenerating the matching condition at nodes

- Let $\tau_{\nu} \in\left(\mathbb{C}^{\times}\right)^{n} / T_{\mu, \mathbb{C}}$ be a sequence of deformation parameters, $\tau_{\nu} \rightarrow \infty$, and let u_{ν} be a τ_{ν}-deformed map.

Towards tropical Fukaya algebra : degenerating the matching condition at nodes

- Let $\tau_{\nu} \in\left(\mathbb{C}^{\times}\right)^{n} / T_{\mu, \mathbb{C}}$ be a sequence of deformation parameters, $\tau_{\nu} \rightarrow \infty$, and let u_{ν} be a τ_{ν}-deformed map.
- We prove that the sequence u_{ν} converges to a split map.
- A split map is a version of a broken map with no matching condition on nodes, but with a non-trivial tropical symmetry group. In particular, the codimension of the matching condition is equal to the dimension of the tropical symmetry group.

Towards tropical Fukaya algebra : degenerating the matching condition at nodes

Result

The moduli space of split disks modulo the action of the tropical symmetry group is homotopy equivalent to the moduli space of broken disks:

$$
\mathcal{M}^{\text {split }}(\mathcal{X}, L) / T_{\text {trop }, \mathbb{C}} \simeq \mathcal{M}^{\text {brok }}(\mathcal{X}, L)
$$

Towards tropical Fukaya algebra : degenerating the matching condition at nodes

Result

The moduli space of split disks modulo the action of the tropical symmetry group is homotopy equivalent to the moduli space of broken disks:

$$
\mathcal{M}^{\text {split }}(\mathcal{X}, L) / T_{\text {trop }, \mathbb{C}} \simeq \mathcal{M}^{\text {brok }}(\mathcal{X}, L)
$$

The composition maps of the tropical Fukaya algebra

$$
C F_{\text {trop }}(\mathcal{X}, L)
$$

are given by counts of symmetry orbits of split disks.

Towards tropical Fukaya algebra : degenerating the matching condition at nodes

Result

The moduli space of split disks modulo the action of the tropical symmetry group is homotopy equivalent to the moduli space of broken disks:

$$
\mathcal{M}^{\text {split }}(\mathcal{X}, L) / T_{\text {trop }, \mathbb{C}} \simeq \mathcal{M}^{\text {brok }}(\mathcal{X}, L)
$$

The composition maps of the tropical Fukaya algebra

$$
C F_{\text {trop }}(\mathcal{X}, L)
$$

are given by counts of symmetry orbits of split disks.

Theorem (VW)

There is a homotopy equivalence $C F_{\operatorname{trop}}(\mathcal{X}, L) \simeq C F_{\mathrm{brok}}(\mathcal{X}, L)$.

Example : deforming the node matching condition

We return to the example of a toric variety.

- Let X be a toric variety. Neighborhoods of torus-invariant divisors are separated using cuts.

Example : deforming the node matching condition

We return to the example of a toric variety.

- Let X be a toric variety. Neighborhoods of torus-invariant divisors are separated using cuts.
- There is one cut space $X_{P_{0}}$ which is diffeomorphic to X, but with a 'smaller' symplectic form. All the torus-invariant divisors of $X_{P_{0}}$ are relative divisors.

Example : deforming the node matching condition

We return to the example of a toric variety.

- Let X be a toric variety. Neighborhoods of torus-invariant divisors are separated using cuts.
- There is one cut space $X_{P_{0}}$ which is diffeomorphic to X, but with a 'smaller' symplectic form. All the torus-invariant divisors of $X_{P_{0}}$ are relative divisors.
- The Lagrangian $L \subset X_{P_{0}}$ is a torus-orbit.

Example : deforming the node matching condition

Broken map $u: C \rightarrow \mathcal{X}$

of Maslov index 2

Example : deforming the node matching condition

A τ-deformed $u_{\tau}=\left(u_{+}, u_{-}^{\tau}\right)$ disk in \mathcal{X} :

As $\tau_{\nu} \rightarrow \infty$, the sequence of τ_{ν}-deformed maps converge to a map with no matching condition on the node.

Example : Split disk

Slope of e :

$$
\mu_{e}=(0,1) \in \mathbb{Z}^{2}
$$

- Codimension of matching condition = Dimension of tropical symmetry group of $u_{\infty}=2$.

Example : Split disk

Slope of e :

$$
\mu_{e}=(0,1) \in \mathbb{Z}^{2}
$$

- Codimension of matching condition $=$ Dimension of tropical symmetry group of $u_{\infty}=2$.
- Observe : we have chosen the direction in which deformation parameters go to infinity as
$\eta:=\pi_{\mu_{e}}^{\perp}(1,0) \in \mathbb{R}^{2} /\left\langle\mu_{e}\right\rangle$.
Here $\pi_{\mu_{e}}^{\perp}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} /\left\langle\mu_{e}\right\rangle$ is the projection map.

Direction of approach for split maps

If the deformation parameters approached infinity in the opposite direction, i.e.

$$
\pi_{\mu_{e}}^{\perp}(-(1,0)) \in \mathbb{R}^{2} /\left\langle\mu_{e}\right\rangle
$$

then as $\tau_{\nu} \rightarrow \infty$ we would obtain the following different limit map :

$$
\begin{aligned}
& \text { Slope of } e \text { : } \\
& \qquad \mu_{e}=(0,1) \in \mathbb{Z}^{2}
\end{aligned}
$$

Direction of approach for split maps

If the deformation parameters approached infinity in the opposite direction, i.e.

$$
\pi_{\mu_{e}}^{\perp}(-(1,0)) \in \mathbb{R}^{2} /\left\langle\mu_{e}\right\rangle
$$

then as $\tau_{\nu} \rightarrow \infty$ we would obtain the following different limit map :

Slope of e :

$$
\mu_{e}=(0,1) \in \mathbb{Z}^{2}
$$

To prevent an over-count we should not count both this map, and the one in the previous page. Therefore the direction of approach η is part of the datum of a split map, which is similar to a choice of Morse function.

Example : Split disk, continued

Slope of e :

$$
\mu_{e}=(0,1) \in \mathbb{Z}^{2}
$$

- Direction of approach $=\eta:=\pi_{\mu_{e}}^{\perp}(1,0) \in \mathbb{R}^{2} /\left\langle\mu_{e}\right\rangle$.

Example : Split disk, continued

Slope of e :

$$
\mu_{e}=(0,1) \in \mathbb{Z}^{2}
$$

- Direction of approach $=\eta:=\pi_{\mu_{e}}^{\perp}(1,0) \in \mathbb{R}^{2} /\left\langle\mu_{e}\right\rangle$.
- The set of possible discrepancies of tropical weights across e is

$$
\text { Discrepancy cone } \begin{aligned}
\mathcal{W} & :=\pi_{\mu_{e}}^{\perp}\left(\left\{\mathcal{T}\left(v_{+}\right)-\mathcal{T}\left(v_{-}\right)\right\}\right) \\
& =\pi_{\mu_{e}}^{\perp}(\{(1,0) t: t \geq 0\}) \subset \mathbb{R}^{2} / \mu_{e}
\end{aligned}
$$

Example : Split disk, continued

Slope of e :

$$
\mu_{e}=(0,1) \in \mathbb{Z}^{2}
$$

- Direction of approach $=\eta:=\pi_{\mu_{e}}^{\perp}(1,0) \in \mathbb{R}^{2} /\left\langle\mu_{e}\right\rangle$.
- The set of possible discrepancies of tropical weights across e is

$$
\text { Discrepancy cone } \begin{aligned}
\mathcal{W} & :=\pi_{\mu_{e}}^{\perp}\left(\left\{\mathcal{T}\left(v_{+}\right)-\mathcal{T}\left(v_{-}\right)\right\}\right) \\
& =\pi_{\mu_{e}}^{\perp}(\{(1,0) t: t \geq 0\}) \subset \mathbb{R}^{2} / \mu_{e}
\end{aligned}
$$

- Remark: \mathcal{W} is a cone containing η.

The remark is true in general :
Result
If a sequence u_{ν} of $\nu \eta$-deformed maps converge to u as $\nu \rightarrow \infty$. Then the set of discrepancies \mathcal{W}_{u} is a cone containing η.

Definition of a split disk

Definition

Given a direction of approach $\eta \in \mathbb{R}^{n} / \mu_{e}$, a split disk $u: C \rightarrow \mathcal{X}$

- is a version of a broken map with no matching condition on the edge e,
- and for which the set of discrepancies of tropical weights across e

$$
(\text { Cone condition }) \quad \pi_{\mu_{e}}^{\perp}\left(\left\{\mathcal{T}\left(v_{+}\right)-\mathcal{T}\left(v_{-}\right)\right\}\right) \subset \mathbb{R}^{n} / \mu_{e}
$$

is a top-dimensional cone containing η.

Definition of a split disk

Definition

Given a direction of approach $\eta \in \mathbb{R}^{n} / \mu_{e}$, a split disk $u: C \rightarrow \mathcal{X}$

- is a version of a broken map with no matching condition on the edge e,
- and for which the set of discrepancies of tropical weights across e

$$
(\text { Cone condition }) \quad \pi_{\mu_{e}}^{\perp}\left(\left\{\mathcal{T}\left(v_{+}\right)-\mathcal{T}\left(v_{-}\right)\right\}\right) \subset \mathbb{R}^{n} / \mu_{e}
$$

is a top-dimensional cone containing η.

Dimension of discrepancy cone $\times 2=$ dimension of tropical symmetry group.

Definition of a split disk

Definition

Given a direction of approach $\eta \in \mathbb{R}^{n} / \mu_{e}$, a split disk $u: C \rightarrow \mathcal{X}$

- is a version of a broken map with no matching condition on the edge e,
- and for which the set of discrepancies of tropical weights across e

$$
(\text { Cone condition }) \quad \pi_{\mu_{e}}^{\perp}\left(\left\{\mathcal{T}\left(v_{+}\right)-\mathcal{T}\left(v_{-}\right)\right\}\right) \subset \mathbb{R}^{n} / \mu_{e}
$$

is a top-dimensional cone containing η.

Dimension of discrepancy cone $\times 2=$ dimension of tropical symmetry group.

Definition of a split disk : Consequences of cone condition

Discrepancy cone is top-dimensional \Longrightarrow

- Dimension of tropical symmetry group=codimension of edge matching condition.

Definition of a split disk : Consequences of cone condition

Discrepancy cone is top-dimensional \Longrightarrow

- Dimension of tropical symmetry group=codimension of edge matching condition.
- For a split map u, for any $t \in T_{\mathbb{C}} / T_{\mu_{e}, \mathbb{C}}$, the tropical symmetry orbit of u contains a t-deformed map.

Definition of a split disk : Consequences of cone condition

Discrepancy cone is top-dimensional \Longrightarrow

- Dimension of tropical symmetry group=codimension of edge matching condition.
- For a split map u, for any $t \in T_{\mathbb{C}} / T_{\mu_{e}, \mathbb{C}}$, the tropical symmetry orbit of u contains a t-deformed map.

Slope of e :

$$
\mu_{e}=(0,1) \in \mathbb{Z}^{2}
$$

Example of split map : 2 dimensions

Some of the types that may occur in the limit

Example of split map : 2 dimensions

Some of the types that may occur in the limit

In both these examples $\operatorname{dim} \mathcal{W}=1$, and therefore it is a top-dimensional cone in $\mathbb{R}^{2} /\left\langle\mu_{e}\right\rangle$.

An example in 3 dimensions

Suppose we deform maps modelled on the graph Γ in the direction $\eta:=\pi_{(1,1,1)}^{\perp}(2,1,0) \in \mathbb{R}^{3} /\langle(1,1,1)\rangle$.

An example in 3 dimensions

Suppose we deform maps modelled on the graph Γ in the direction $\eta:=\pi_{(1,1,1)}^{\perp}(2,1,0) \in \mathbb{R}^{3} /\langle(1,1,1)\rangle$.

A possible type of limit map :

An example in 3 dimensions

Suppose we deform maps modelled on the graph Γ in the direction $\eta:=\pi_{(1,1,1)}^{\perp}(2,1,0) \in \mathbb{R}^{3} /\langle(1,1,1)\rangle$.

A possible type of limit map :

- The discrepancy cone $\mathcal{W}=\pi_{(1,1,1)}^{\perp}(\{(2,1,0) t: t \geq 0\}) \subset \mathbb{R}^{3} /\langle\mu(e)\rangle$ is not top-dimensional. Therefore the deformation may produce a limit that is not a split map.

An example in 3 dimensions

Suppose we deform maps modelled on the graph Γ in the direction $\eta:=\pi_{(1,1,1)}^{\perp}(2,1,0) \in \mathbb{R}^{3} /\langle(1,1,1)\rangle$.

A possible type of limit map :

- The discrepancy cone $\mathcal{W}=\pi_{(1,1,1)}^{\perp}(\{(2,1,0) t: t \geq 0\}) \subset \mathbb{R}^{3} /\langle\mu(e)\rangle$ is not top-dimensional. Therefore the deformation may produce a limit that is not a split map.
- To get around this issue, we take the direction of approach to be 'generic'.

Deforming in a generic direction

Let us deform maps modelled on the graph Γ in the direction $\eta:=\pi_{(1,1,1)}^{\perp}(r, 1,0) \in \mathbb{R}^{3} /\langle(1,1,1)\rangle$, where $1<r<2$ is a fixed irrational number.

Deforming in a generic direction

Let us deform maps modelled on the graph Γ in the direction $\eta:=\pi_{(1,1,1)}^{\perp}(r, 1,0) \in \mathbb{R}^{3} /\langle(1,1,1)\rangle$,
where $1<r<2$ is a fixed irrational number.
One of the possible limit maps is \tilde{u} modelled on the tropical graph is $\tilde{\Gamma}$:

The discrepancy cone is $\mathcal{W}=\left\{\mathcal{T}\left(v_{+}\right)-\mathcal{T}\left(v_{-}\right)\right\}=\left\{(2,1,0) t_{1}+(1,1,0) t_{2}: t_{1}, t_{2} \geq 0\right\}$, which contains the direction of deformation η, and is top-dimensional in $\mathbb{R}^{3} /\langle(1,1,1)\rangle$.

Application: unobstructedness

```
Theorem (VW)
Suppose \(\mathcal{X}\) is a broken manifold. Let \(X_{P_{0}} \subset \mathcal{X}\) be a toric component. That is, the tropical moment map is an honest moment map on \(X_{P_{0}}\). For any Lagrangian torus orbit \(L \subset X_{P_{0}}, C F_{\text {brok }}(\mathcal{X}, L)\) is unobstructed.
```

Unobstructedness of toric Lagrangians proved by Fukaya-Oh-Ohta-Ono is a corollary, by using the multiple cut described earlier :

Application: unobstructedness

Theorem (VW)

Suppose \mathcal{X} is a broken manifold. Let $X_{P_{0}} \subset \mathcal{X}$ be a toric component. That is, the tropical moment map is an honest moment map on $X_{P_{0}}$. For any Lagrangian torus orbit $L \subset X_{P_{0}}, C F_{\text {brok }}(\mathcal{X}, L)$ is unobstructed.

Unobstructedness of toric Lagrangians proved by Fukaya-Oh-Ohta-Ono is a corollary, by using the multiple cut described earlier :

Application: unobstructedness

Recall the issue in the unobstructedness proof was that the moduli space of broken disks is not T-invariant.

Application: unobstructedness

Recall the issue in the unobstructedness proof was that the moduli space of broken disks is not T-invariant.

For a split map u, the cone condition implies that for any $t \in T_{\mathbb{C}}$, the tropical symmetry orbit of u contains a t-deformed map.

Application: unobstructedness

Recall the issue in the unobstructedness proof was that the moduli space of broken disks is not T-invariant.

For a split map u, the cone condition implies that for any $t \in T_{\mathbb{C}}$, the tropical symmetry orbit of u contains a t-deformed map.
Consequently, in a split map, the moduli space of the disk part is invariant under the action of the compact torus, leading to unobstructedness.

