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1 Covering maps

The purpose of this section is to review the theory of covering maps. Here are some classical

(popular?) l references: Jänich [Jän05, Kapitel 9], Fulton [Ful95, Parts VI and VII], May [May99,

§1-§4], and Hatcher [Hat02, §1].

1.1 Introduction

Definition 1.1. A continuous map 𝑝 : 𝑋 → 𝐵 is a covering map if for every 𝑏 ∈ 𝐵 there are an

open subset𝑈 ⊂ 𝐵 with 𝑏 ∈ 𝑈 , a discrete space 𝐷 , and a homeomorphism 𝜏 : 𝑝−1(𝑈 ) → 𝑈 ×𝐷
such that

pr
1
◦ 𝜏 = 𝑝 |𝑝−1 (𝑈 ) . •

Here are some examples (which might not be sufficiently convincing).

Example 1.2. Let 𝐵 be a topological space. Let 𝐷 be a discrete space. The projection map

pr
1

: 𝐵 × 𝐷 → 𝐵 is a covering map: the trivial covering map of 𝐵 with fibre 𝐷 . ♠
Example 1.3. The exponential map exp : C → C×

is a covering map. ♠
Example 1.4. The cosine map cos : C\𝜋Z → C\{±1} is a covering map. ♠
Example 1.5. Consider 𝑆1 B [0, 1]/{0, 1}.

(1) The map 𝑝∞ : R → 𝑆1
defined by 𝑝∞(𝑥) B [⌊𝑥⌋] is a covering map.

(2) For every 𝑘 ∈ N0, the map 𝑝𝑘 : 𝑆1 → 𝑆1
defined by 𝑝𝑘 ( [𝑥]) B [⌊𝑘𝑥⌋] is a covering

map. ♠
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The degree of a covering map Here are a straight-forward observation and another example.

Definition 1.6. Let𝑝 : 𝑋 → 𝐵 be a proper coveringmap. The degree of 𝑝 is themap deg· (𝑝) : 𝐵 →
N0 defined by

deg𝑏 (𝑝) ≔ #𝑝−1(𝑏) . •

Proposition 1.7. Let 𝑝 : 𝑋 → 𝐵 be a proper covering map. The map deg· (𝑝) is locally constant. ■
Example 1.8.

(1) Denote by

Poly �
∐
𝑑∈N0

C× × C𝑑

the space of complex polynomials. The topology on Poly is choosen so thatmap pdeg : Poly →
N0 which assigns to every polynomial its degree is continuous. Consider the universal
set of roots

Roots B {(𝑝, 𝑧) ∈ Poly × C : 𝑝 (𝑧) = 0}.

The projection map 𝑞 : Roots → Poly is a not a covering map—it violates Proposition 1.7:

𝑝𝜀 (𝑧) B 𝑧2 + 𝜀 has a unique root if 𝜀 = 0, but 2 distinct roots if 𝜀 ≠ 0.

(2) The above issue is easily rectified (or rather ignored) as follows. Denote by Poly
◦ ⊂ Poly

the open subset of those 𝑝 ∈ Poly with pdeg(𝑝) = #𝑝−1(0) roots or, equivalently, with
non-zero discriminant. Set Roots

◦ ≔ Roots ∩ (Poly
◦ × C). The restriction

𝑞◦ B 𝑞 |Roots
◦ : Roots

◦ → Poly
◦

is a covering map. ♠

Covering maps and the regular value theorem In differential geometry, covering map are

almost unavoidable because of the following observations.

Proposition 1.9. If 𝑝 : 𝑋 → 𝐵 is a proper local homeomorphism, then it is a covering map. ■

Proposition 1.10. Let𝑝 : 𝑋 → 𝐵 be a proper equi-dimensional smoothmap. Set𝐵◦ B 𝐵\𝑝 (Crit(𝑝))
and 𝑋 ◦ B 𝑝−1(𝐵◦). The restriction 𝑝◦ B 𝑝 |𝑋 ◦ : 𝑋 ◦ → 𝐵◦ is a covering map. ■

Proposition 1.11. Let 𝑝 : 𝑋 → 𝐵 be a covering map. If 𝐵 is a smooth manifold, then 𝑋 admits a
unique smooth structure such that 𝑝 is smooth (indeed: a local diffeomorphism). ■

Here are two examples to illustrate the above.

Example 1.12. Denote by H the normed R–algebra of the quaternions. Set

Sp(1) ≔ {𝑞 ∈ H : |𝑞 | = 1}.

The map Ad : Sp(1) → SO(ImH) = SO(3) defined by

Ad(𝑞)𝑥 B 𝑞𝑥𝑞∗

is a covering map of degree 2; moreover: it is a Lie group homomorphism. ♠

4



Remark 1.13. SO(3) naturally is a submanifold of R3×3 = R9
. Since dim SO(3) = 3, it seems quite

wasteful to encode a rotation as a 3 × 3–matrix and inefficient to compute the composition of

two rotations via matrix multiplication. Example 1.12 offer a more parsimonious and efficient

solution to this problem—at the expense of a slight over-parametrisation. ♣
Example 1.14.

(1) For a unit vector 𝑣 ∈ 𝑆2 ⊂ R3
and an angle 𝛼 ∈ 𝑆1 B R/2𝜋Z denote by 𝑅𝑣 (𝛼) ∈ SO(3)

the rotation around 𝑣 by 𝛼 . Define 𝐸 : 𝑇 3 B (𝑆1)3 → SO(3) by

𝐸 (𝜙, 𝜃,𝜓 ) B 𝑅𝑒3
(𝜙)𝑅𝑒2

(𝜃 )𝑅𝑒3
(𝜓 ) .

This is the over-parametrization of SO(3) by Euler angles—in the intrinsic 𝑧𝑦𝑧 convention.
𝐸 is proper and surjective, but not a covering map because Crit(𝐸) ≠ ∅.

(2) Proposition 1.10 produces a covering map 𝐸◦ : (𝑇 3)◦ → SO(3)◦ of degree 2; but: not a Lie

group homomorphism. ♠

Remark 1.15.

(1) Example 1.14 provides an even more parsimonious encoding of SO(3) than Example 1.12;

however: computing compositions is not straight-forward.

(2) Here is how Example 1.14 arises in practice. 𝑇 3
describes the rotations of a three-axis

gimbal; e.g., a robot arm. The map 𝐸 encodes the rotation of object suspended in the

gimbal effected by the rotations of the gimbal. Crit(𝐸) is the set of Euler angles for which
gimbal lock occurs. ♣

Covering maps and Riemann surfaces Let Σ,𝑇 be closed Riemann surfaces. If 𝑓 : Σ → 𝑇 is a

non-constant holomorphic map, then Crit(𝑓 ) is a finite set. As a consequence, passing to the

covering map 𝑓 ◦ : Σ◦ → 𝑇 ◦
obtained by Proposition 1.10 does not incur a substantial loss of

information.

Proposition 1.16. Let 𝑇 be a Riemann surface. Let 𝐵 ⊂ 𝑇 be a finite subset. Set 𝑇 ◦ B 𝑇 \𝐵. Let
𝑓 ◦ : Σ◦ → 𝑇 ◦ be a covering map. There is a closed Riemann surface Σ, a finite subset 𝑅 ⊂ Σ, and a
holomorphic map 𝑓 : Σ → 𝑇 such that Σ\𝑅 = Σ◦ and 𝑓 ◦ = 𝑓 |Σ◦ . ■

It suffices to prove this for𝑇 ◦ = 𝐷×
. In this case, the result follows from the classification of

covering maps of 𝑝 : Σ◦ → 𝐷×
. If Σ◦

is connected, then every covering map is essentially of

the form 𝐷× → 𝐷×, 𝑧 ↦→ 𝑧𝑘 .

The above observation is particularly important because of the following foundational

result.

Theorem 1.17 (Riemann’s existence theorem). Every closed Riemann surface Σ admits a non-
constant holomorphic map 𝑓 : Σ → C𝑃1. ■

The proof of Theorem 1.17 is somewhat difficult (certainly by historic standards) and requires

some (e.g., analytic) machinery.

Here is a more elementary observation.
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Proposition 1.18. Let Σ,𝑇 be closed Riemann surfaces. Let 𝑓 : Σ → 𝑇 be a holomorphic map. If 𝑓
is non-constant and 𝑇 is connected, then 𝑓 is surjective. ■

This implies the fundamental theorem of calculus as follows; cf. Milnor [Mil97, p.8?]. Let

𝑝 (𝑧) =
𝑑∑︁
𝑘=0

𝑎𝑘𝑧
𝑘 ∈ C[𝑧]

be a polynomial of degree 𝑑 ⩾ 1. Since 𝑃 : C𝑃1 → C𝑃1
defined by

𝑃 ( [𝑧 : 𝑤]) ≔
[
𝑑∑︁
𝑘=0

𝑎𝑘𝑧
𝑘𝑤𝑑−𝑘 : 𝑤𝑑

]
is surjective, 𝑝 must have a root.

Riemann surfaces rather naturally appear in complex analysis; in particular, through the

following concept.

Definition 1.19. A multi-valued holomorphic function on𝑈 ⊂ C is connected Riemann surface

Σ ⊂ 𝑈 × C such that pr
1

: Σ → 𝑈 is surjective. •
Example 1.20. The square-root is

Sqrt B {(𝑧,𝑤) ∈ C× × C : 𝑧 = 𝑤2}. ♠

Example 1.21. The logarithm is

Log B {(𝑧,𝑤) ∈ C× × C : 𝑧 = 𝑒𝑤}. ♠

Covering maps and quotients Finally, covering maps arise from quotients by (exceptionally

tame) group actions.

Definition 1.22. Let𝐺 be group. Let𝑋 be a topological space. A right action𝑋 ⟲ 𝐺 is a covering
space action if every 𝑥 ∈ 𝑋 has an open neighborhood𝑈 such that𝑈 · 𝑔 ∩𝑈 ≠ ∅ if and only if

𝑔 = 1 ∈ 𝐺 . •
Proposition 1.23. Let𝑋 ⟲ 𝐺 be a covering space action. Let𝐻 < 𝐺 The projection map 𝑝 : 𝑋/𝐻 →
𝑋/𝐺 is a covering map. ■

Two examples shall suffice to illustrate this.

Example 1.24.

(1) Consider 𝑆𝑛 with the round metric 𝑔; that is: the metric induced by the Euclidean metric

on R𝑛+1
. The isometry group Isom(𝑆𝑛, 𝑔) is O(𝑛 + 1). If Γop < O(𝑛 + 1) induces a

covering space action, then 𝑔 descends to a Riemannian metric 𝑔 on 𝑆𝑛/Γ with sectional

curvature sec𝑔 = 1. In fact, by the Riemann–Hopf–Killing theorem, every spherical
space form (that is: a complete Riemannian manifold (𝑋,𝑔) with sec𝑔 = 1) arises from

this construction (up to isometry).

(2) It is know which subgroups Γop < O(𝑛 + 1) occur. This is quite difficult and discussed,

e.g., in Wolf [Wol11].
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(3) Let 𝑛 ∈ N. Let 𝑝 ∈ N and 𝑞1, . . . , 𝑞𝑛 ∈ Z such that

gcd(𝑝, 𝑞𝑖) = 1.

Identify R2𝑛 = C𝑛 and define 𝜙 ∈ SO(2𝑛) by

𝜙 (𝑧1, . . . , 𝑧𝑛) ≔ (𝑒2𝜋𝑖𝑞1/𝑝𝑧1, · · · , 𝑒2𝜋𝑖𝑞𝑛/𝑝𝑧1).

By construction, the subgroup ⟨𝜙⟩ ⊂ SO(2𝑛) is cyclic of order 𝑝 and acts freely on 𝑆2𝑛−1
.

The lens space 𝐿(𝑝;𝑞1, . . . , 𝑞𝑛) is the quotient

𝐿(𝑝;𝑞1, . . . , 𝑞𝑛) ≔ 𝑆2𝑛−1/⟨𝜙⟩.

In particular, 𝐿(2, 1, 1) = R𝑃3
. The projection map 𝑆2𝑛−1 → 𝐿(𝑝;𝑞1, . . . , 𝑞𝑛) is a covering

map. ♠

Example 1.25. Let 𝑋 be a topological space. Let 𝑘 ∈ N.

(1) 𝑋𝑘 ⟲ 𝑆𝑘 via

(𝑥1, . . . , 𝑥𝑘 ) · 𝜎 B (𝑥𝜎 (1) , . . . , 𝑥𝜎 (𝑘 ) ) .

The 𝑘–th symmetric power of 𝑋 is

Sym
𝑘 (𝑋 ) B 𝑋𝑘/𝑆𝑘 .

The projection map 𝑝 : 𝑋𝑘 → Sym
𝑘 (𝑋 ) is not a covering map—with the exception of a few

edge cases. This is also called the configuration space of 𝑘 points in 𝑋 . Sym
𝑘 (R𝑛) plays

an important role in the study of multi-valued functions, as it appears, e.g., in Almgren

[Alm00].

(2) The map 𝑝 fails to be a covering map along the fat diagonal Δ ⊂ 𝑋𝑘 defined by

Δ B
{
(𝑥1, . . . , 𝑥𝑘 ) ∈ 𝑋𝑘 : #{𝑥1, . . . , 𝑥𝑘 } < 𝑘

}
.

The regular part of the 𝑘–th symmetric power of 𝑋 is

Sym
𝑘 (𝑋 )◦ B (𝑋𝑘\Δ)/𝑆𝑘 .

The projection map 𝑝◦ : 𝑋𝑘\Δ → Sym
𝑘 (𝑋 )◦ is a covering map. This is also called the

unordered configuration space.

(3) If𝐺 < 𝑆𝑘 is a subgroup, then 𝑞 : (𝑋𝑘\Δ)/𝐺 → Sym
𝑘 (𝑋 )◦ is a covering map. Sym

𝑘 (𝑋 )◦ is
the space of subsets 𝑆 ⊂ 𝑋 with #𝑆 = 𝑘 . If 𝑆𝑘−1 � 𝐺 < 𝑆𝑘 is subgroup fixing 1 ∈ {1, . . . , 𝑘},
then (𝑋𝑘\Δ)/𝐺 is the space of subset 𝑆 ⊂ 𝑋 with #𝑆 = 𝑘 together with a choice of 𝑥 ∈ 𝑆 .
For 𝑋 = C this (essentially) recovers Example 1.8 (restricted to degree 𝑘 polynomials). ♠
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1.2 The category of covering maps of 𝐵

At this point the reader is (hopefully) convinced that the concept of covering map is sufficiently

relevant to introduce a category of covering maps.

Definition 1.26. Let C be a category. Let 𝑏 be an object of C. The slice category is the category

C/𝑏 whose objects are morphisms 𝑝 : 𝑥 → 𝑏 in C, and whose morphisms 𝜙 : (𝑝 : 𝑥 → 𝑏) →
(𝑞 : 𝑦 → 𝑏) are morphsisms 𝜙 : 𝑥 → 𝑦 in C satisfying

𝑝 = 𝑞 ◦ 𝜙. •

Definition 1.27. Let 𝐵 be a topological space. The category of covering maps of 𝐵 is the full

subcategory Cov(𝐵) ⊂ Top/𝐵 whose objects are covering maps 𝑝 : 𝑋 → 𝐵. •
Proposition 1.28. Cov(𝐵) has products and coproducts. ■

Example 1.29. Cov({∗}) � Set. ♠
Under rather mild connectivity assumptions on 𝐵, Cov(𝐵) can be (essentially) determined

algbraically from the fundamental group 𝜋1(𝐵,𝑏); see Section 1.10.

Here is an observation about Cov(𝐵) which is so trivial that it usually is not even mentioned.

Definition 1.30. Let 𝐵 be a topological space. Denote by Op(𝐵) the category whose objects are

open subset 𝑈 ⊂ 𝐵 and whose morphisms 𝑈 → 𝑉 are inclusions 𝑈 ⊂ 𝐵. Define the functor

Cov𝐵 : Op(𝐵)op → Cat as follows.

(1) For every open subset𝑈 ⊂ 𝐵 set Cov𝐵 (𝑈 ) B Cov(𝑈 )

(2) For every inclusion of open subset 𝑈 ⊂ 𝑉 ⊂ 𝐵, Cov𝐵 (𝑈 ⊂ 𝑉 ) : Cov(𝑉 ) → Cov(𝑈 ) is
the (obvious) restriction functor. •

Proposition 1.31. Cov𝐵 is a sheaf; that is: for every open cover {𝑈𝑖 : 𝑖 ∈ 𝐼 } of𝑈 ⊂ 𝐵 the diagram

Cov𝐵 (𝑈 ) →
∐
𝑖∈𝐼

Cov𝐵 (𝑈𝑖) ⇒
∐

(𝑖, 𝑗 ) ∈𝐼 2

Cov𝐵 (𝑈𝑖 ∩𝑈 𝑗 )

is an equaliser. ■

1.3 The fibred category of covering maps

See Vistoli’s notes http://homepage.sns.it/vistoli/descent.pdf for more on fibred cate-

gories.

Definition 1.32. Let C be a category. The arrow category is the category Arr(C) whose objects
are morphisms 𝑝 : 𝑥 → 𝑎 in C, and whose morphisms (𝑝 : 𝑥 → 𝑎) → (𝑞 : 𝑦 → 𝑏) are pairs of
morphisms 𝜙 : 𝑥 → 𝑦 and 𝑓 : 𝑎 → 𝑏 in C satisfying

𝑓 ◦ 𝑝 = 𝑞 ◦ 𝜙. •

Definition 1.33. The category of covering maps is the full subcategory Cov ⊂ Arr(Top) whose
objects are covering maps 𝑝 : 𝑋 → 𝐵. •
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The main reason to introduce Cov is to talk about pull-packs. This is a good excuse to

introduce fibred categories.

Definition 1.34. Let 𝑃 : X → B be a functor. A morphism 𝜙 : 𝑥 → 𝑦 is cartesian if for

every object 𝑧 of X, every morphism 𝑔 : 𝑃 (𝑧) → 𝑃 (𝑥), and every morphism 𝜓 : 𝑧 → 𝑥 with

𝑃 (𝜓 ) = 𝑃 (𝜙) ◦ 𝑔 there is a unique morphism 𝜁 : 𝑧 → 𝑦 such that

𝜓 = 𝜙 ◦ 𝜁 .

that is:

𝑧

𝑃 (𝑧) 𝑥 𝑦

𝑃 (𝑥) 𝑃 (𝑦)

𝜓

∃!𝜁

𝑔

𝜙

𝑃 (𝜙 )

•

Definition 1.35. A fibred category is a functor 𝑃 : X → B such that for every object 𝑥 of X and

every morphism 𝑓 : 𝑎 → 𝑃 (𝑥) there is a cartesian lift; that is: a cartesian morphism 𝜙 : 𝑦 → 𝑥

with

𝑃 (𝜙) = 𝑓 . •
Proposition 1.36. The codomain functor𝑈 : Cov → Top is a fibred category.

Proof. Let 𝑝 : 𝑋 → 𝐵 be a be a covering map. Let 𝑓 : 𝐴 → 𝐵 be a smooth map. Set

𝑓 ∗𝑋 B {(𝑎, 𝑥) ∈ 𝐴 × 𝑋 : 𝑓 (𝑎) = 𝑝 (𝑥)} ⊂ 𝐴 × 𝑋 .

Define 𝜙 : 𝑓 ∗𝑋 → 𝑋 by 𝜙 (𝑎, 𝑥) B 𝑥 and 𝑓 ∗𝑝 : 𝑓 ∗𝑋 → 𝐴 by 𝑓 ∗𝑝 (𝑎, 𝑥) B 𝑎. A moment’s

thought shows that 𝑓 ∗𝑝 is a covering map. Evidently, (𝜙, 𝑓 ) : 𝑞 → 𝑝 is cartesian. ■

Definition 1.37. For every covering map 𝑝 : 𝑋 → 𝐵 and every continuous map 𝑓 : 𝐴 → 𝐵

choose a cartesian lift

𝑓 ∗𝑋 𝑋

𝐴 𝐵.

𝑓 ∗𝑝

𝑝∗ 𝑓

𝑝

𝑓

Denote this as the pullback of 𝑝 via 𝑓 . •
Remark 1.38. Let 𝑝 : 𝑋 → 𝐶 be a covering map and 𝑓 : 𝐴 → 𝐵, 𝑔 : 𝐵 → 𝐶 be continuous maps.

Typically, (𝑔 ◦ 𝑓 )∗𝑝 is not equal to 𝑓 ∗𝑔∗𝑝 but there is a canonical isomorphism

𝐼𝑓 ,𝑔 : (𝑔 ◦ 𝑓 )∗ � 𝑓 ∗ ◦ 𝑔∗

by the definition of cartesian morphism. In the implementation of pull-backs given above,

𝐼𝑓 ,𝑔 (𝑝) : (𝑔 ◦ 𝑓 )∗𝑋 → 𝑓 ∗𝑔∗𝑋

is given by 𝐼𝑓 ,𝑔 (𝑝) (𝑎, 𝑥) = (𝑎, (𝑓 (𝑎), 𝑥)). ♣
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A key fact about Cov(𝐵) is that it is an invariant of the homotopy-type of 𝐵. This can be

proved as follows.

Proposition 1.39. Let 𝑝 : 𝑋 → [0, 1]×𝐵 be a covering map. For every𝑏 ∈ 𝐵 there are an open subset
𝑉 ⊂ 𝐵 with 𝑏 ∈ 𝑉 , a discrete space 𝐷 , and a homeomorphism 𝜏 : 𝑝−1( [0, 1] ×𝑉 ) → [0, 1] ×𝑉 ×𝐷
such that (pr

1
, pr

2
) ◦ 𝜏 = 𝑝 |𝑝−1 ( [0,1]×𝑉 ) .

Proof. By Definition 1.1 and since [0, 1] is compact, for every 𝑏 ∈ 𝐵 there are an open subset

𝑉 ⊂ 𝐵 with 𝑏 ∈ 𝑉 , 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 1, and for every 𝑖 ∈ {0, . . . , 𝑛 − 1} a discrete space
𝐷𝑖 and a homeomorphism 𝜏𝑖 : 𝑝−1( [𝑡𝑖 , 𝑡𝑖+1] ×𝑉 ) → [𝑡𝑖 , 𝑡𝑖+1] ×𝑉 ×𝐷𝑖 such that (pr

1
, pr

2
) ◦ 𝜏𝑖 =

𝑝 |𝑝−1 ( [𝑡𝑖 ,𝑡𝑖+1 ]×𝑉 ) .
Set 𝜎𝑖 B (pr

2
, pr

3
) ◦ 𝜏−1

𝑖−1
◦ 𝜏𝑖 (𝑡𝑖 , ·) : 𝑉 × 𝐷𝑖 → 𝑉 × 𝐷𝑖−1. Evidently, 𝜎𝑖 is a homeomorphism

satisfying pr
1
= pr

1
◦ 𝜎𝑖 , and the homeomorphisms 𝜏𝑖 ≔ 𝜎0 ◦ · · · ◦ 𝜎𝑖 ◦ 𝜏𝑖 glue to the desired

homeomorphism 𝜏 . ■

Proposition 1.40. For every covering map 𝑝 : 𝑋 → [0, 1] × 𝐵 there is a unique isomorphism

𝜙 : pr
∗
𝐵𝑖

∗
0
𝑝 � 𝑝

in Cov( [0, 1] × 𝐵) such that 𝑖∗
0
𝜙 : 𝑖∗

0
pr

∗
2
𝑖∗
0
𝑝 � 𝑖∗

0
𝑝 is the canonical isomorphism in Cov(𝐵). Here

𝑖0 : 𝐵 → [0, 1] × 𝐵 is defined by 𝑖0(𝑏) B (0, 𝑏).

Proof. If 𝜙,𝜓 are two such isomorphisms, then (𝜙,𝜓 )−1(Δ) is open and closed in pr
∗
2
𝑖∗
0
𝑋 �

[0, 1] × 𝑝−1({0} × 𝐵) and contains {0} × 𝑝−1({0} × 𝐵). Therefore, 𝜙 = 𝜓 .

The isomorphisms 𝜙 exists for (pr
1
, pr

2
) : [0, 1] × 𝐵 × 𝐷 → [0, 1] × 𝐵. Therefore, by

uniqueness and Proposition 1.39, it exists for every covering map 𝑝 : 𝑋 → [0, 1] × 𝐵. ■

Corollary 1.41. If 𝑓0, 𝑓1 are homotopy-equivalent, then Cov(𝑓0), Cov(𝑓1) are naturally isomorphic.
Moreover, a homotopy equivalence induces an natural isomorphism. ■

1.4 The lifting problem

Definition 1.42. Let C be a category. Let 𝑝 : 𝑥 → 𝑏 and 𝑓 : 𝑎 → 𝑏 be morphisms in C. A
morphism

˜𝑓 : 𝑎 → 𝑥 is a lift of 𝑓 along 𝑝 if

𝑓 = 𝑝 ◦ ˜𝑓 ;

that is: the diagram

𝑥

𝑎 𝑏

𝑝

𝑓

˜𝑓

commutes or, equivalently,

˜𝑓 ∈ HomC/𝑏 (𝑓 , 𝑝) . •

The lifting problem is to determine HomC/𝑏 (𝑓 , 𝑝), the set of lifts of 𝑓 along 𝑝 . Many

questions in geometry and topology are lifting problems. Here are some examples.
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Example 1.43.Which open subsets𝑈 ⊂ C×
admit a logarithm; that is: a lift of𝑈 ⊂ C×

along

exp? ♠
Example 1.44. Let 𝑃 : 𝐴 → Poly be a continous map. Is is possible to continuously choose roots

of 𝑃 ; that is: a lift of 𝑃 along 𝑝 in Example 1.8? ♠
Example 1.45. Imagine a robot arm holding a banana. A movement in time of the banana is

encoded by a path 𝛾 : [0, 1] → SO(3). The question of how to operate the robot arm to achieve

this path is the lifting problem along 𝐸. ♠
Example 1.46. Let 𝑓 : 𝐴 → Sym

𝑘 (𝑋 ) be a 𝑘–valued function. Is it possible to lift it to 𝑘 single-

valued functions? ♠
Example 1.47. Via pull-backs the lifting problem can always be reduced to id𝐴: Indeed, there is

a canonical bijection HomTop/𝐵 (𝑓 , 𝑝) � HomTop/𝐴 (id𝐴, 𝑓 ∗𝑝). ♠
Example 1.48. Pullbacks allow trivial solutions of lifting problems. Let 𝑓 : 𝐵 → Sym

𝑘 (𝑋 )◦ be a
𝑘–valued map. Consider the covering map 𝑝◦ : 𝑋𝑘\Δ → Sym

𝑘 (𝑋 )◦. The map 𝑓 might not lift,

but 𝑓 ◦ 𝑓 ∗𝑝◦ canonically lifts: the lift is 𝑝∗ 𝑓 . ♠

1.5 The unique homotopy lifting property

This section lays the foundation for solving the lifting problem in Section 1.8. The following

asserts that the lifting problem along covering maps is very rigid.

Definition 1.49. Let 𝑝 : 𝑋 → 𝐵 and 𝑓 : 𝐴 → 𝐵 be continous maps. Let 𝑎 ∈ 𝐴. Set 𝑏 B 𝑓 (𝑎).
Define the evaluation map

ev𝑎 : HomTop/𝐵 (𝑓 , 𝑝) → 𝑝−1(𝑏)

by

ev𝑎 ( ˜𝑓 ) B ˜𝑓 (𝑎) . •
Proposition 1.50. Let 𝑝 : 𝑋 → 𝐵 and 𝑓 : 𝐴 → 𝐵 be continous maps. Let 𝑎 ∈ 𝐴. If 𝑝 is a covering
map and 𝐴 is connected, then ev𝑎 is injective.

This is an immediate consequence of the following.

Lemma 1.51. Let 𝑝 : 𝑋 → 𝐵 be a covering map. Set

𝑋 ×𝐵 𝑋 ≔ {(𝑥,𝑦) ∈ 𝑋 × 𝑋 : 𝑝 (𝑥) = 𝑝 (𝑦)} and Δ ≔ {(𝑥, 𝑥) ∈ 𝑋 ×𝐵 𝑋 }.

The subset Δ ⊂ 𝑋 ×𝐵 𝑋 is open and closed.

Proof. For 𝑥 ∈ 𝑋 denote by 𝑉𝑥 an open neighborhood of 𝑥 ∈ 𝑋 such that 𝑝 (𝑉𝑥 ) is open and

𝑝 |𝑉𝑥 : 𝑉𝑥 → 𝑝 (𝑉𝑥 ) is a homeomorphism. (𝑉 × 𝑉 ) ∩ (𝑋 ×𝐵 𝑋 ) is an open neighborhood of

(𝑥, 𝑥) ∈ 𝑋 ×𝐵 𝑋 and contained in Δ. Therefore, Δ is open.

Let (𝑥,𝑦) ∈ (𝑋 ×𝐵 𝑋 )\Δ. Choose 𝑉𝑥 ,𝑉𝑦 as above with 𝑉𝑥 ∩𝑉𝑦 = ∅. (𝑉𝑥 ×𝑉𝑦) ∩ 𝑋 ×𝐵 𝑋 is

an open neighborhood of (𝑥,𝑦) ∈ 𝑋 ×𝐵 𝑋 and does not intersect Δ. Therefore, Δ is closed. ■

Proof of Proposition 1.50. Suppose ˜𝑓1, ˜𝑓2 : 𝐴 → 𝑋 are lifts of 𝑓 along 𝑝 with
˜𝑓𝑖 (𝑎) = 𝑥 . By

Lemma 1.51, 𝑆 B ( ˜𝑓1, ˜𝑓2)−1(Δ) is open and closed. Since 𝑎 ∈ 𝑆 and 𝐴 is connected, 𝑆 = 𝐴; hence:
˜𝑓1 = ˜𝑓2. ■
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There are obstructions to the lifting problem along covering maps; that is: ev𝑎 need not be

a bijection. Here is an example to illustrate this.

Example 1.52. There is no lift of id𝑆1 along 𝑝∞ from Example 1.5:

HomTop/𝑆1 (id𝑆1, 𝑝∞) = ∅.

Indeed, if
˜𝑓 : 𝑆1 → R were a lift, then

˜𝑓 (𝑆1) would be compact interval [𝑎, 𝑏] and 𝑝∞ | [𝑎,𝑏 ] would
be a bijection. However, 𝑝∞ | [𝑎,𝑏 ] is injective if and only if 𝑏 − 𝑎 < 1 and surjective if and only if

𝑏 − 𝑎 ⩾ 1. ♠
However, there are no obstructions to lifting continuous paths (even in families). Here is a

precise formulation of this observation.

Definition 1.53. Let 𝐴 be a topological space. A continuous map 𝑝 : 𝑋 → 𝐵 has the homotopy
lifting property (HLP) with respect to 𝐴 if for every homotopy ℎ : [0, 1] × 𝐴 → 𝐵 and lift

˜ℎ0 : 𝐴 → 𝑋 of ℎ0 B ℎ(0, ·) : 𝐴 → 𝐵 there is a homotopy
˜ℎ : [0, 1] ×𝐴 → 𝑋 which is a lift

˜ℎ of

ℎ with
˜ℎ(0, ·) = ˜ℎ0; that is: the diagram

𝐴 𝑋

[0, 1] ×𝐴 𝐵

˜ℎ0

𝑝

ℎ

˜ℎ

commutes. •
Definition 1.54. A continuous map 𝑝 : 𝑋 → 𝐵 is a Hurewicz fibration if it has the HLP with

respect to every topological space. •
Theorem 1.55. Every covering map 𝑝 : 𝑋 → 𝐵 is a Hurewicz fibration.

Proof. If 𝐷 is a discrete space, then pr
1

: 𝐵 × 𝐷 → 𝐵 is a Hurewicz fibration. Consequently,

every 𝑏 ∈ 𝐵 has a neighborhood𝑈 such that 𝑝 |𝑝−1 (𝑈 ) : 𝑝−1(𝑈 ) → 𝑈 is a Hurewicz fibration.

Let 𝐴 be a topological space. Let ℎ : [0, 1] × 𝐴 → 𝐵 be a homotopy. For every (𝑡, 𝑎) ∈
[0, 1] × 𝐴 choose a neighborhood 𝑈𝑡,𝑎 of ℎ(𝑡, 𝑎) as above. Since [0, 1] is compact, there are

0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 1 and an open neighborhood𝑉𝑎 of 𝑎 ∈ 𝐴 with [𝑡𝑖 , 𝑡𝑖+1] ×𝑉𝑎 ⊂ ℎ−1(𝑈𝑡,𝑎)
for some 𝑡 ∈ [0, 1]. Let ˜ℎ0 be a lift of ℎ(0, ·). Since 𝑝 |𝑝−1 (ℎ ( [𝑡𝑖 ,𝑡𝑖+1 ]×𝑉𝑎 ) ) is a Hurewicz fibration, a

finite induction argument constructs a lift
˜ℎ𝑉𝑎 of ℎ | [0,1]×𝑉𝑎 with

˜ℎ𝑉𝑎 (0, ·) = ˜ℎ0 |𝑉𝑎 .
By Proposition 1.50 and because [0, 1] is connected, ˜ℎ𝑉𝑎 and

˜ℎ𝑉𝑏 agree on [0, 1] × (𝑉𝑎 ∩𝑉𝑏).
Therefore, they assemble into a lift

˜ℎ of ℎ with
˜ℎ(0, ·) = ˜ℎ0. ■

1.6 The fundamental group(oid)

It is useful to encode the unique homotopy lifting property (Proposition 1.50 and Theorem 1.55)

algebraically. This requires the following terminology from algebraic topology.

Definition 1.56. A groupoid is a category G in which every morphism is an isomorphism. The

category of groupoids is the full subcategory Gpd ⊂ Cat whose objects are groupoids. •
Definition 1.57. The fundamental groupoid (functor) is the functor Π1 : Top → Gpd defined

as follows:
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(Ob) Let 𝑋 be a topological space. The fundamental groupoid of 𝑋 is the groupoid Π1(𝑋 )
whose objects are the elements of 𝑋 , and whose morphisms [𝛾] : 𝑥 → 𝑦 are homotopy

classes rel {0, 1} of continuous paths 𝛾 : [0, 1] → 𝑋 with 𝛾 (0) = 𝑥 and 𝛾 (1) = 𝑦,

composed by concatenation.

(Hom) Let 𝑓 : 𝑋 → 𝑌 be a continuous map. Π1(𝑓 ) : Π1(𝑋 ) → Π1(𝑌 ) is defined by

Π1(𝑓 ) (𝑥) B 𝑓 (𝑥) and Π1(𝑓 ) ( [𝛾]) B [𝑓 ◦ 𝛾] . •

The fundamental groupoid Π1(𝑋 ) is useful in constructions, e.g., in Section 1.10; however:

it is also rather unwiedly. Fortunately, it is possible to drastically compress Π1(𝑋 )—essentially
without loss of information.

Definition 1.58. The fundamental group (functor) is the functor 𝜋1 : pTop → Grp defined as

follows:

𝜋1(𝑋, 𝑥) B AutΠ1 (𝑋 ) (𝑥) and 𝜋1(𝑓 ) B Π1(𝑓 ) |𝜋1 (𝑋,𝑥 ) . •
Proposition 1.59. Let (𝑋, 𝑥) be a pointed topological space. 𝑋 is path-connected if and only if the
inclusion B𝜋1(𝑋, 𝑥) = Π1(𝑋 )𝑥 ⊂ Π1(𝑋 ) is an equivalence of categories. ■

Example 1.60. Let [𝛾] ∈ 𝜋1(𝑆1, [0]). By Proposition 1.50 and Theorem 1.55, there [𝛾] has a
unique lift [𝛾] to a homotopy class rel {0, 1} of continuous paths 𝛾 : [0, 1] → R with 𝛾 (0) = 0.

Define the winding number map𝑤 : 𝜋1(𝑆1, [0]) → Z by

𝑤 ( [𝛾]) B [𝛾] (1).

A few moments’ thought show that this is a group isomorphism. ♠
Example 1.61. Let 𝑘 ∈ N. Consider Sym

𝑘 (C)◦ from Example 1.25. Set ∗ B [1, 2, . . . , 𝑘] ∈
Sym

𝑘 (C)◦. The fundamental group

𝐵𝑘 B 𝜋1(Sym
𝑘 (C)◦, ∗)

is the braid group on 𝑘–strands. It is superficially obvious (but quite cumbersome to prove)

that 𝐵𝑘 has the Artin presentation in terms of generators and relations:

𝐵𝑘 � ⟨𝜎1, . . . , 𝜎𝑘−1 : 𝜎𝑖𝜎𝑖+1𝜎𝑖 = 𝜎𝑖+1𝜎𝑖𝜎𝑖+1, 𝜎𝑖𝜎 𝑗 = 𝜎 𝑗𝜎𝑖 (𝑖 − 𝑗 ⩾ 2)⟩.

Here 𝜎𝑖 ∈ 𝐵𝑘 is the obvious element swapping 𝑖 and 𝑖 + 1 in anti-clockwise fashion. ♠
The (obvious) homotopy-invariance of 𝜋1(𝑋, 𝑥) and the following result are useful for

computations.

Theorem 1.62 (Seifert–van Kampen for 𝜋1). Let (𝑋, 𝑥) be a topological space. Let U be a subcate-
gory of pTop whose objects are open subsets of 𝑋 containing 𝑥 and whose morphisms are inclusions.
If the objects ofU cover 𝑋 and are closed under finite intersections, then

𝜋1(𝑋, 𝑥) � colim𝜋1 |U

in Grp. ■

Example 1.63. The fundamental group of bouquet of 𝑘 circles is isomorphic to the free group

𝐹𝑘 ; cf. Section 1.12. ♠
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1.7 Fibre transport and monodromy

Here is the desired algebraic formulation of the unique homotopy lifting property (Proposi-

tion 1.50 and Theorem 1.55).

Corollary 1.64. Let 𝑝 : 𝑋 → 𝐵 is a covering map. Let 𝑥 ∈ 𝑋 and 𝑏 ∈ 𝐵. The map∐
𝑦∈𝑝−1 (𝑏 )

HomΠ1 (𝑋 ) (𝑥,𝑦) → HomΠ1 (𝐵) (𝑝 (𝑥), 𝑏)

induced by Π1(𝑝) is bijective. ■

Corollary 1.65. If 𝑝 : 𝑋 → 𝐵 is a covering map, then for every 𝑥 ∈ 𝑋 the homomorphism
𝜋1(𝑝) : 𝜋1(𝑋, 𝑥) → 𝜋1(𝐵, 𝑝 (𝑥)) is injective. ■

As a consequence of Corollary 1.64 the following construction is well-defined.

Definition 1.66. The fibre transport functor

Fib : Cov(𝐵) → Π1(𝐵)–Set B Fun(Π1(𝐵), Set)

is the functor defined as follows:

(Ob) Let𝑝 : 𝑋 → 𝐵 be a coveringmap. Thefibre transport of 𝑝 is the functor Fib(𝑝) : Π1(𝐵) →
Set defined by

Fib(𝑝) (𝑏) B 𝑝−1(𝑏) and Fib(𝑝) ( [𝛾]) (𝑥) B [𝛾] (1)

with [𝛾] denoting the unique lift of [𝛾] with [𝛾] (0) = 𝑥 .

(Hom) Let 𝜙 : 𝑝 → 𝑞 be a morphism of covering map of 𝐵. The natural transformation

Fib(𝜙) : Fib(𝑝) → Fib(𝑝) is defined by

Fib(𝜙)𝑏 B 𝜙 |𝑝−1 (𝑏 ) : Fib(𝑝) (𝑏) = 𝑝−1(𝑏) → Fib(𝑞) (𝑏) = 𝑞−1(𝑏) . •

Example 1.67. Consider 𝑞◦ : Roots
◦ → Poly

◦
from Example 1.8. Consider the continuous

loop 𝛾 (𝑡) : [0, 1] → Poly
◦
defined by 𝛾 (𝑡) B 𝑧2 − 𝑒2𝜋𝑖𝑡

. A moment’s thought shows that

Fib(𝑞) (𝑧2 − 1) = {𝑧2 − 1} × {±1} and Fib(𝑞) ( [𝛾]) acts by exchanges the two roots. ♠
The fibre transport functor is quite remarkable. It transforms geometric data into algebraic

data, and in the process does not lose any information. Indeed, under mild connectivity

assumptions, it is an equivalence of categories; see Section 1.10.

Although it is usually not terribly difficult to compute Fib(𝑝) ( [𝛾]) for concrete 𝑝 and [𝛾],
completely determining Fib(𝑝) is, at least, very cumbersome. It is useful to compress Fib as

follows.

Definition 1.68. Let 𝑏 ∈ 𝐵. The evaluation functor

ev𝑏 : Π1(𝐵)–Set → 𝜋1(𝐵,𝑏)–Set

is obtained by composition with the inclusion B𝜋1(𝐵,𝑏) ↩→ Π1(𝐵). •
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Corollary 1.69. Let 𝑏 ∈ 𝐵. If 𝐵 is path-connected, then ev𝑏 is an equivalence of categories. ■

Definition 1.70. Let 𝑏 ∈ 𝐵. The monodromy representation (functor) at 𝑏 is

𝜇𝑏 B ev𝑏 ◦ Fib : Cov(𝐵) → 𝜋1(𝐵,𝑏)–Set.

The monodromy representation of a covering map 𝑝 : 𝑋 → 𝐵 is the group homomorphism

𝜇𝑏 (𝑝) : 𝜋1(𝐵,𝑏) → 𝑝−1(𝐵). •
It is important to understand that the monodromy representation is quite computable in

practice and can often be determined very explicitly. Here are two examples.

Example 1.71. Consider exp : C → C×
from Example 1.3. The fundamental group 𝜋1(C×, 1) is

generated by [𝛾] with 𝛾 (𝑡) ≔ 𝑒2𝜋𝑖𝑡
. Evidently, 𝜇1(exp) = 2𝜋𝑖Z with [𝛾] acting as a shift by

2𝜋𝑖 . ♠
Example 1.72. Consider 𝑝◦ : C𝑘\Δ → Sym

𝑘 (C)◦ from Example 1.25. Set ∗ B [1, 2, . . . , 𝑘] ∈
Sym

𝑘 (C)◦. Themonodromy representation 𝜇∗(𝑝◦) is a group homomorphism𝜋1(Sym
𝑘 (C)◦, ∗) →

𝑆𝑘 = Bij({1, . . . , 𝑘}). This is the obvious homomorphism 𝐵𝑘 → 𝑆𝑘 in the Artin presentation. ♠
Exercise 1.73. Compute the monodromy of cos : C\𝜋Z → C\{±1} from Example 1.4.

The monodromy representation can further be understood as follows.

Proposition 1.74. Let 𝑏 ∈ 𝐵. Let 𝑝 : 𝑋 → 𝐵 be a covering map. If 𝑋 is path-connected, then
𝜇𝑏 (𝑝) : 𝜋1(𝐵,𝑏) → Bij(𝑝−1(𝑏)) is transitive. ■

If is a transitive left action 𝐺 ⟳ 𝑆 and 𝑠 ∈ 𝑆 , then 𝐺 ⟳ 𝑆 is isomorphic to 𝐺 ⟳ 𝐺/Stab𝐺 (𝑠).
Therefore,

Definition 1.75. Let 𝑝 : 𝑋 → 𝐵 be a continuousmap. Let 𝑥 ∈ 𝑋 . Set𝑏 B 𝑝 (𝑥). The characteristic
subgroup of (𝑝, 𝑥) is

𝐶 (𝑝, 𝑥) B im(𝜋1(𝑝) : 𝜋1(𝑋, 𝑥) → 𝜋1(𝐵,𝑏)) < 𝜋1(𝐵,𝑏) . •

Proposition 1.76. Let 𝑝 : 𝑋 → 𝐵 be a covering map. Let 𝑏 ∈ 𝐵. The stabiliser of 𝑥 ∈ 𝑝−1(𝑏) with
respect to 𝜇𝑏 (𝑝) is

Stab𝜋1 (𝐵,𝑏 ) (𝑥) = 𝐶 (𝑝, 𝑥) . ■

8

Here is a needlessly formal way to say what is going on with the characteristic subgroup.

Corollary 1.77. Let (𝐵,𝑏) be a pointed topological space. Denote by pTop the category of pointed
topological spaces. Denote by pCov◦(𝐵,𝑏) the full subcategory whose objects are pointed covering
map map 𝑝 : (𝑋, 𝑥) → (𝐵,𝑏) with 𝑋 path-connected. Denote by SubGrp(𝜋1(𝐵,𝑏)) the category
whose objects are subgroups of 𝜋1(𝐵,𝑏) and whose morphisms are inclusions. Denote by

𝐶 : pTop/(𝐵,𝑏) → SubGrp(𝜋1(𝐵,𝑏))

the characteristic subgroup functor and by

Quot : SubGrp(𝜋1(𝐵,𝑏)) → 𝜋1(𝐵,𝑏)–Orb
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the quotient functor. The diagram

pCov◦(𝐵,𝑏) SubGrp(𝜋1(𝐵,𝑏))

Cov◦(𝐵) 𝜋1(𝐵,𝑏)–Orb

𝐶

𝑈 Quot

𝜇𝑏

commutes upto natural isomorphism. ■

1.8 Lifting along covering maps

The following result is a rather satisfactory answer to the lifting problem raised in Section 1.4.

It shows that monodromy is the only obstruction to lifting under mild connectivity assumptions..

Theorem 1.78. Let 𝑝 : 𝑋 → 𝐵 and 𝑓 : 𝐴 → 𝐵 be continous maps. Let 𝑎 ∈ 𝐴. Set 𝑏 B 𝑓 (𝑎). If 𝐴 is
path-connected and locally path-connected, then ev𝑎 induces a bijection

ev𝑎 : HomTop/𝐵 (𝑓 , 𝑝) → 𝑝−1(𝑏)𝜋1 (𝐴,𝑎) = {𝑥 ∈ 𝑝−1(𝑏) : 𝐶 (𝑝, 𝑥) ⊃ 𝐶 (𝑓 , 𝑎)}

with 𝜋1(𝐴, 𝑎) ⟳ 𝑝−1(𝑏) via 𝜇𝑏 (𝑝) ◦ 𝜋1(𝑓 ).
The proof of Theorem 1.78 requires the following preparation.

Definition 1.79. Let 𝑋,𝑌 be topological spaces. A (set-theoretic) map 𝑓 : 𝑋 → 𝑌 is path-
preserving if for for every continuous path 𝛾 : [0, 1] → 𝑋 the composition 𝑓 ◦ 𝛾 : [0, 1] → 𝑌

is a continuous path. •
Lemma 1.80. Let 𝑝 : 𝑋 → 𝐵 be a covering map. Let ˜𝑓 : 𝐴 → 𝑋 be path-preserving. If 𝐴 is locally
path-connected and 𝑝 ◦ ˜𝑓 is continuous, then ˜𝑓 is continuous.

Proof. Let 𝑎 ∈ 𝐴. Choose an open neighborhood 𝑉 ∋ 𝑏 ≔ 𝑝 ◦ ˜𝑓 (𝑎), a discrete space 𝐷 , a

homeomorphism 𝜏 : 𝑝−1(𝑉 ) → 𝑉 × 𝐷 such that pr
1
◦ 𝜏 = 𝑝 |𝑝−1 (𝑉 ) . Choose a path-connected

open neighborhood𝑈 ∋ 𝑎 with 𝑝 ◦ ˜𝑓 (𝑈 ) ⊂ 𝑉 . It remains to prove that pr
2
◦ 𝜏 ◦ ˜𝑓 |𝑈 : 𝑈 → 𝐷 is

continuous. Since this map is path-preserving,𝑈 is path-connected, and 𝐷 is discrete, it must

be constant. ■

Proof of Theorem 1.78. The asserted equality is a consequence of Proposition 1.76.

If
˜𝑓 ∈ HomTop/𝐵 (𝑓 , 𝑝) and 𝑥 B ev𝑎 ( ˜𝑓 ) = ˜𝑓 (𝑎), then 𝐶 (𝑓 , 𝑎) ⊂ 𝐶 (𝑝, 𝑥) because 𝜋1(𝑓 ) =

𝜋1(𝑝) ◦ 𝜋1( ˜𝑓 ).
Conversely, let 𝑥 ∈ 𝑝−1(𝑓 (𝑎))𝜋1 (𝐴,𝑎)

. Define
˜𝑓 : 𝐴 → 𝑋 by

˜𝑓 (𝑏) B Fib(𝑝) (Π1(𝑓 ) [𝛾]) (𝑥)

for [𝛾] ∈ HomΠ1 (𝐴) (𝑎, 𝑏). By hypothesis, this is independent of the choice of [𝛾]. By construc-

tion,
˜𝑓 is path-preserving and 𝑝 ◦ ˜𝑓 = 𝑓 . Therefore, by Lemma 1.80, it is continous. ■

Example 1.81. 𝑈 ⊂ C×
admits a logarithm if and only if for every 𝑥 ∈ 𝑈 the map 𝜋1(𝑈 , 𝑥) →

𝜋1(C×, 𝑥) is trivial. ♠
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1.9 Deck transformations

Definition 1.82. The deck transformation group of a covering map 𝑝 : 𝑋 → 𝐵 is its automor-

phism group

Deck(𝑝) B AutCov(𝐵) (𝑝) . •
Proposition 1.83. Let 𝑝 : 𝑋 → 𝐵 be a covering map. If 𝑋 is connected and locally connected, then
the action Deck(𝑝) ⟳ 𝑋 is a covering space action.

Proof. By Proposition 1.50, the action is free.

Let 𝑏 ∈ 𝐵. Since 𝑋 is locally connected, there are𝑈 , 𝐷 , and 𝜏 be as in Definition 1.1 with𝑈

connected. Let 𝜙 ∈ Deck(𝑝)\{id𝑋 }. Since𝑈 is connected, there is a bijection 𝑓♯ ∈ Bij(𝐷) such
that

𝜏 ◦ 𝜙 ◦ 𝜏−1 = id𝑈 × 𝜙♯ .
Since 𝜙 has no fixed-points, 𝜙♯ has no fixed-points. Therefore,

𝜙 (𝑉𝑑 ) ∩𝑉𝑑 = ∅ for 𝑉𝑑 ≔ 𝜏−1(𝑈 × {𝑑})

for every 𝑑 ∈ 𝐷 . ■

The deck transformation group can be computed as follows.

Proposition 1.84. Let 𝑝 : 𝑋 → 𝐵 be a covering map. Let 𝑥 ∈ 𝑋 . Set 𝑏 B 𝑝 (𝑥). Assume that 𝑋 is
path-connected and locally path-connected. There is a unique isomorphism

𝜄𝑥 : Deck(𝑝)op →𝑊𝜋1 (𝐵,𝑏 ) (𝐶 (𝑝, 𝑥)) B 𝑁𝜋1 (𝐵,𝑏 ) (𝐶 (𝑝, 𝑥))/𝐶 (𝑝, 𝑥)

such that for every 𝜙 ∈ Deck(𝑝)

𝜙 (𝑥) = 𝜇𝑏 (𝑝) (𝜄𝑥 (𝜙)) (𝑥).

Proof. By Theorem 1.78, the evaluation map

ev𝑥 : Deck(𝑝) → 𝑝−1(𝑏)𝜋1 (𝑋,𝑥 ) = {𝑦 ∈ 𝑝−1(𝑏) : 𝐶 (𝑝,𝑦) = 𝐶 (𝑝, 𝑥)}

is a bijection. Since 𝑋 is path-connected and by Proposition 1.76, the map

𝜇𝑏 (𝑝) (·) (𝑥) : 𝜋1(𝐵,𝑏)/𝐶 (𝑝, 𝑥) → 𝑝−1(𝑏)

is a bijection. Since

𝐶 (𝑝,𝑦) = [𝛾]𝐶 (𝑝, 𝑥) [𝛾]−1
with 𝑦 B 𝜇𝑏 (𝑝) ( [𝛾]) (𝑥),

the above map induces a bijection

𝜇𝑏 (𝑝) (·) (𝑥) : 𝑊𝜋1 (𝐵,𝑏 ) (𝐶 (𝑝, 𝑥)) → 𝑝−1(𝑏)𝜋1 (𝑋,𝑥 ) .

Therefore, 𝜄𝑥 is uniquely determined as a (set-theoretic) map.

It remains to veryify that 𝜄𝑥 is a group homomorphism. This is an immediate consequence of

the fact that deck transformations 𝑓 ∈ Deck(𝑝) commute with the monodromy representation

𝜇𝑏 (𝑝); indeed:

𝜙 (𝜓 (𝑥)) = 𝜙 (𝜇𝑏 (𝑝) (𝜄𝑥 (𝜓 )) (𝑥)) = 𝜇𝑏 (𝑝) (𝜄𝑥 (𝜓 )) (𝜙 (𝑥))
= 𝜇𝑏 (𝑝) (𝜄𝑥 (𝜓 )) (𝜇𝑏 (𝑝) (𝜄𝑥 (𝜙)) (𝑥)) = 𝜇𝑏 (𝑝) (𝜄𝑥 (𝜓 )𝜄𝑥 (𝜙)) (𝑥) . ■
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Example 1.85. For 𝑝∞ : R → 𝑆1
from Example 1.5, Deck(𝑝∞) = Z ⟳ R and 𝜄0 is the inverse of

the winding number map from Example 1.60. ♠
The following definition is possibly inescapable.

Definition 1.86. A coveringmap 𝑝 : 𝑋 → 𝐵 with𝑋 path-connected and locally path-connected is

principal (orGalois or normal) if 𝑝 induces descends to a homeomorphism𝑋/Deck(𝑝) � 𝐵. •
Corollary 1.87. A covering map 𝑝 : 𝑋 → 𝐵 with 𝑋 path-connected and locally path-connected is
principal if and only if for 𝐶 (𝑝, 𝑥) < 𝜋1(𝐵, 𝑝 (𝑥)) is a normal subgroup. ■

Remark 1.88. Since subgroups are rarely normal, covering maps are rarely principal. ♣
Example 1.89. The normaliser of ⟨(12)⟩ < 𝑆3 is ⟨(12)⟩. ♠

The following observation is sometimes useful to compute fundamental groups.

Corollary 1.90. If 𝑝 is principal, then exact sequence

𝜋1(𝑋, 𝑥) ↩→ 𝜋1(𝐵,𝑏) ↠ Deck(𝑝)op. ■

1.10 Classification of covering maps

Proposition 1.91. If 𝐵 is locally path-connected, then Fib : Cov(𝐵) → Tra(𝐵) is full and faithful.

Proof. Evidently, Fib is faithful.

Let 𝑝 : 𝑋 → 𝐵 and 𝑞 : 𝑌 → 𝐵 be covering maps. Let 𝜙 : Fib(𝑝) → Fib(𝑝) be a morphism in

Tra(𝐵). Define the (set-theoretic) map 𝜙 : 𝑋 → 𝑌 by

𝜙 |𝑝−1 (𝑏 ) ≔ 𝜙𝑏 .

By construction, 𝑝 = 𝑞 ◦ 𝑓 and 𝑓 is path-perserving. By Lemma 1.80, 𝜙 is continuous. Therefore,

Fib is full. ■

Proposition 1.91 can be strengthened as follows.

Definition 1.92. A topological space 𝑋 is semi-locally simply-connected if every 𝑥 ∈ 𝑋 has a

neighborhood𝑈 such that for every 𝑦, 𝑧 ∈ 𝑈

# im(HomΠ1 (𝑈 ) (𝑦, 𝑧) → HomΠ1 (𝑋 ) (𝑦, 𝑧)) = 1. •

Theorem 1.93 (Classification of covering maps, I). If 𝐵 is locally path-connected and semi-locally
simply-connected, then

Fib : Cov(𝐵) → Π1(𝐵)–Set

is an equivalence of categories.

The proof of Theorem 1.93 relies the following construction.

Definition 1.94. The set-theoretic reconstruction functor rec : Π1(𝐵)–Set → Set/𝐵 is defined

by:
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(Ob) For every object 𝑇 of Π1(𝐵)–Set define

rec(𝑇 ) : 𝑋𝑇 B
∐
𝑏∈𝐵

𝑇 (𝑏) → 𝐵

to be the canonical projection.

(Hom) For every morphism 𝑓 : 𝑇 → 𝑆 in Π1(𝐵)–Set define

rec(𝑓 ) B
∐
𝑏∈𝐵

𝑓 (𝑏) : 𝑋𝑇 → 𝑋𝑆 . •

Definition 1.95. Let 𝐵 be a topological space. Let 𝑇 be an object of Π1(𝐵)–Set.

(1) Denote by U the set of open subsets𝑈 ⊂ 𝐵 be open such that for every 𝑏, 𝑐 ∈ 𝑈

# im

(
HomΠ1 (𝑈 ) (𝑏, 𝑐) → HomΠ1 (𝐵) (𝑏, 𝑐)

)
= 1.

(2) Let 𝑏 ∈ 𝑈 ∈ U. Define the bijection 𝜏𝑏,𝑈 : 𝑋𝑇 → 𝑈 ×𝑇 (𝑏) by

𝜏𝑏,𝑈 (𝑐, 𝑥) B (𝑐,𝑇 ( [𝛾𝑐
𝑏,𝑈

])𝑥) with {[𝛾𝑐
𝑏,𝑈

]} B im

(
HomΠ1 (𝑈 ) (𝑐, 𝑏) → HomΠ1 (𝐵) (𝑐, 𝑏)

)
.

(3) The transport topology is the coarsest topology on 𝑋𝑇 with respect to which the maps

𝜏𝑏,𝑈 (𝑏 ∈ 𝑈 ∈ U, 𝑏 ∈ 𝑈 ) are continuous. •

The following construction lifts rec along Cov(𝐵) → Set/𝐵.
Proposition 1.96. Let 𝐵 be a locally path-connected and semi-locally simply-connected topological
space.

(1) For every object 𝑇 of Π1(𝐵)–Set, rec(𝑇 ) : 𝑋𝑇 → 𝐵 is a covering map of 𝐵 with respect to
the transport topology on 𝑋𝑇 .

(2) For every morphism 𝑓 : 𝑇 → 𝑆 in Π1(𝐵)–Set, rec(𝑓 ) : 𝑋𝑇 → 𝑋𝑆 is a morphism covering
maps of 𝐵 with respect to the transport topology on 𝑋𝑇 and 𝑋𝑆 .

Proof. The assumptions guarantee that U is an open cover of 𝐵. Therefore, it suffices to prove

that for every 𝑈 ∈ U and 𝑏 ∈ 𝑈 the bijection 𝜏𝑏,𝑈 is a homeomorphism with respect to the

transport topology. In fact, it suffices to prove that

𝜏𝑏,𝑈 ◦ 𝜏−1

𝑐,𝑉 : (𝑈 ∩𝑉 ) ×𝑇 (𝑐) → (𝑈 ∩𝑉 ) ×𝑇 (𝑏)

is continuous for every 𝑏 ∈ 𝑈 ∈ U and 𝑐 ∈ 𝑉 ∈ U.

Let 𝑑 ∈ 𝑈 ∩𝑉 . Since 𝐵 is locally path-connected, 𝑑 has a path-connected open neighborhood

𝑊 ⊂ 𝑈 ∩𝑉 . Evidently,𝑊 ∈ U. For every 𝑒 ∈𝑊

𝑇 ( [𝛾𝑒
𝑏,𝑈

] [𝛾𝑐𝑒,𝑉 ]) = 𝑇 ( [𝛾
𝑒
𝑏,𝑈

] [𝛾𝑑𝑒,𝑊 ] [𝛾𝑒
𝑑,𝑊

] [𝛾𝑐𝑒,𝑉 ]) = 𝑇 ( [𝛾
𝑑
𝑏,𝑈

] [𝛾𝑐
𝑑,𝑉

]) ∈ Bij(𝑇 (𝑐),𝑇 (𝑏));

in particular, it does not depend on 𝑒 . Therefore, 𝜏𝑏,𝑈 ◦ 𝜏−1

𝑐,𝑉
is continuous. ■
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Definition 1.97. The reconstruction functorRec : Π1(𝐵)–Set → Cov(𝐵) is the lift of rec : Π1(𝐵)–Set →
Set/𝐵 along the forgetful functor Cov(𝐵) → Set/𝐵 obtained from Proposition 1.96. •

Proof of Theorem 1.93. Because of Proposition 1.91, it remains to verify that Fib is essentially

surjective. This is an immediate consequence of the (nearly obvious) fact that Fib ◦ Rec is

naturally isomorphic to the identity. ■

8

Theorem 1.93 and Corollary 1.69 imply the following.

Corollary 1.98 (Classification of covering maps, II). Let 𝑏 ∈ 𝐵. If 𝐵 is path-connected, locally
path-connected and semi-locally simply-connected, then

𝜇𝑏 : Cov(𝐵) → 𝜋1(𝐵,𝑏)–Set

is an equivalence of categories. ■

8

Definition 1.99. Denote by Cov◦(𝐵) ⊂ Cov(𝐵) the full subcategory whose objects are covering

maps 𝑝 : 𝑋 → 𝐵 with 𝑋 path-connected. •
Definition 1.100. The category of 𝐺–orbits is the full subcategory 𝐺–Orb ⊂ 𝐺–Set whose
objects are transitive 𝐺–actions. •
Proposition 1.101. Cov(𝐵) is the free coproduct completion of Cov◦(𝐵). ■

Proposition 1.102. 𝐺–Set is the free coproduct completion of 𝐺–Orb. ■

Corollary 1.98 immediately implies the following.

Corollary 1.103 (Classification of covering maps, III). Let 𝑏 ∈ 𝐵. If 𝐵 is path-connected, locally
path-connected and semi-locally simply-connected, then

𝜇𝑏 : Cov◦(𝐵) → 𝜋1(𝐵,𝑏)–Orb

is an equivalence of categories. ■

The functor 𝜇𝑏 from Corollary 1.103 is imminently computable because of Proposition 1.76.

1.11 Universal covering maps

Definition 1.104. A covering map 𝑝 : 𝑋 → 𝐵 is universal if and only if 𝑝 is surjective and 𝑋 is

simply-connected. •
Proposition 1.105. Let 𝐵 be path-connected and locally path-connected. 𝐵 is semi-locally simply-
connected if and only if it admits a universal covering map.

Proof. If 𝐵 admits a universal cover, then it is semi-locally simply-connected. Conversely, if 𝐵 is

semi-locally simply-connected, then a universal cover exists by Corollary 1.98. ■
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Remark 1.106. Proposition 1.105 can be proved directly. However, the usual construction boils

down to a special case of the construction of the reconstruction functor Rec. Sometimes,

however, a universal covering map is known to exists a priori. ♣
Corollary 1.107. Every universal covering map is principal. ■

Corollary 1.108. If 𝑝 : 𝑋 → 𝐵 is a universal covering map, then 𝜄𝑥 : Aut(𝑝)op � 𝜋1(𝐵,𝑏). ■

Definition 1.109. Let 𝑝 : 𝑋 → 𝐵 be a covering map such that Aut(𝑝) ⟳ 𝑋 is a covering space

action. The associated covering map functor

A𝑝 : Aut(𝑝)op
–Set → Cov(𝐵)

is defined as follows:

(Ob) Let 𝑆 be a Aut(𝑝)op
–set. 𝑋 × 𝑆 ⟲ Aut(𝑝)op

via

(𝑥, 𝑠) · 𝑓 B (𝑓 (𝑥), 𝑓 −1 · 𝑠) .

The associated covering map is the canonical projection

A𝑝 (𝑆) : 𝑋𝑆 B (𝑋 × 𝑆)/Aut(𝑝)op → 𝐵.

(Hom) Let 𝑓 : 𝑆 → 𝐺 be a morphism of Aut(𝑝)op
–sets. The continuous map id𝑋 × 𝑓 : 𝑋 ×𝑆 →

𝑋 ×𝑇 is Aut(𝑝)op
–equivariant and descends to

A𝑝 (𝑓 ) : A𝑝 (𝑆) → A𝑝 (𝑇 ) . •

Proposition 1.110. If 𝑝 : 𝑋 → 𝐵 is a universal covering map, then the diagram

Aut(𝑝)op
–Set Cov(𝐵)

𝜋1(𝐵,𝑏)–Set

A𝑝

𝜄𝑥
𝜇𝑏

commutes upto natural isomorphism. ■

Corollary 1.111. Let 𝐵 be path-connected and locally path-connected. 𝐵 admits a universal cover if
and only if 𝜇𝑏 is an equivalence of categories. ■

1.12 The Nielsen–Schreier Theorem

Here is an application of the theory of covering maps to algebra.

Definition 1.112. Let 𝑆 be a set. The free group on 𝑆 is the group 𝐹 (𝑆) generated by 𝑆 . A group

𝐺 is free if it is isomorphic to 𝐹 (𝑆) for some 𝑆 . The rank of 𝐺 is rk(𝐺) ≔ #𝑆 . •
Theorem 1.113 (Nielsen–Schreier Theorem). If𝐺 is a free group, then every subgroup 𝐻 < 𝐺 is
free. If rk(𝐺) = 𝑟 ∈ N0 and |𝐻 : 𝐺 | = 𝑖 ∈ N, then rk(𝐻 ) = 𝑖 (𝑟 − 1) + 1.

The proof relies on realising 𝐺 as a fundamental group and the theory of covering maps.
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Definition 1.114.

(1) A graph is a triple Γ = (𝑉 , 𝐸, 𝛼) with 𝑉 a set, 𝐸 a set of unordered pairs, and a map

𝛼 :

⋃
𝐸 → 𝑉 . The vertices and edges of Γ are the elements of 𝑉 and 𝐸 respectively. An

edge 𝑒 connects 𝑥,𝑦 ∈ 𝑉 if 𝛼 (𝑒) = {𝑥,𝑦}.

(2) For every unordered pair 𝑒 = {𝑥,𝑦} set

𝐼𝑒 ≔ (𝑒 × [0, 1])/∼

with ∼ denoting the equivalence relation generated by (𝑥, 𝑡) ∼ (𝑦, 1 − 𝑡).

(3) The topological realisation of Γ is

𝑋 (Γ) ≔
(
𝑉 ⨿

∐
𝑒∈𝐸

𝐼𝑒

)/
∼

with ∼ denoting the equivalence relation generated by [𝑥, 0] ∼ 𝛼 (𝑥). •

Example 1.115. Let 𝑆 be a set. Set𝑉 ≔ {∗} and 𝐸 ≔ {0, 1} ×𝑆 . There is a unique map 𝛼 : 𝐸 → 𝑉 .

The graph Γ = (𝑉 , 𝐸, 𝛼) has a unique vertex ∗ and an edge connecting ∗ to itself for every 𝑠 ∈ 𝑆 .
The topological realisation 𝑋 (Γ) of Γ is homeomorphic to a bouquet of circles indexed by 𝑆 :

𝑋 (Γ) �
∨
𝑠∈𝑆

{𝑠} × 𝑆1 ≔

(∐
𝑠∈𝑆

{𝑠} × 𝑆1

)/
∼

with ∼ denoting the equivalence relation generated by (𝑠, [0]) ∼ (𝑡, [0]). By the Seifert–van

Kampen theorem,

𝜋1(𝑋 (Γ), ∗) � 𝐹 (𝑆) . ♠
Definition 1.116. Let Γ = (𝑉 , 𝐸, 𝛼) be a graph.

(1) A subgraph of a graph Γ = (𝑉 , 𝐸, 𝛼) is a graph Δ = (𝑊, 𝐹, 𝛽) with𝑊 ⊂ 𝑉 , 𝐹 ⊂ 𝐸, and

𝛽 = 𝛼 |𝐹 .

(2) A path in Γ is a is a sequence of vertices 𝑣0, . . . , 𝑣𝑛 together with a sequence of edges

𝑒0, . . . , 𝑒𝑛 such that 𝑒𝑖 connects 𝑣𝑖 and 𝑣𝑖+1. A cycle in Γ is a path with 𝑛 ⩾ 1, 𝑣0 = 𝑣𝑛 , and

𝑒𝑖 ≠ 𝑒𝑖+1.

(3) Γ is connected if for every 𝑣,𝑤 ∈ 𝑉 there is a path with 𝑣0 = 𝑣 and 𝑣𝑛 = 𝑤 .

(4) A forest is a graph without cycles. A tree is a connected forest. •

Proposition 1.117. Let Γ be a connected graph. 𝑋 (Γ) is homotopy-equivalent to a bouquet of circles.

Proof sketch. Denote by T the set of subgraphs of Γ which are trees. There is an obvious

order on T. Use Zorn’s lemma to construct a maximal 𝑇 ∈ T. A moment’s thought shows

that 𝑇 has the same vertices as Γ. The subspace 𝑋 (𝑇 ) ⊂ 𝑋 (Γ) is contractible. 𝑋 (Γ)/𝑋 (𝑇 )
is homeomorphic to a bouquet of circles. Finally, the projection 𝑋 (Γ) → 𝑋 (Γ)/𝑋 (𝑇 ) is a
homotopy equivalence. ■
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Lemma 1.118. Let Γ be a graph. If 𝑝 : 𝑌 → 𝑋 (Γ) is a covering map, then 𝑌 is homeomorphic to
𝑋 (Δ) for some graph Δ. ■

Proof of Theorem 1.113. Let 𝐺 be a free group. Construct a graph Γ with 𝜋1(𝑋 (Γ)) � 𝐺 . If

𝐻 < 𝐺 is a subgroup, then there is a covering map 𝑝 : 𝑌 → 𝑋 (Γ) with characteristic subgroup

isomorphic to 𝐻 . By the above, 𝜋1(𝑌 ) is free.
If 𝐹 has rank 𝑟 and |𝐻 : 𝐺 | = 𝑖 , then deg(𝑝) = 𝑖; hence:

1 − rk(𝐻 ) = 𝜒 (𝑌 ) = 𝑖 𝜒 (𝑋 (Γ)) = 𝑖 (1 − 𝑟 ) .

This implies rk(𝐻 ) = 𝑖 (𝑟 − 1) + 1. ■

2 Fibre bundles

The purpose of this section is to explain the salient points of theory of Ehresmann connections

on (unstructured) fibre bundles. Most of gauge theory is concerned with the less general but

slightly more complicated 𝐺–principal fibre bundles (or fibre bundles with structure groups).

The current section can be understood as a warm-up.

[Ste51] is the classical reference of the topological theory of fibre bundles. [Hus94] is a more

modern reference. The theory of connections of fibre bundles is due to Ehresmann [Ehr51].

Kolář, Michor, and Slovák [KMS93] have an extensive treatment.

2.1 Introduction

Definition 2.1. A fibre bundle is a smooth map 𝑝 : 𝑋 → 𝐵 such that for every 𝑏 ∈ 𝐵 there are

an open subset 𝑏 ∈ 𝑈 ⊂ 𝐵 and a local trivialisation of 𝑝 |𝑝−1 (𝑈 ) ; that is: a smooth manifold 𝐹 ,

and a diffeomorphism 𝜏 : 𝑝−1(𝑈 ) → 𝑈 × 𝐹 such that

pr𝐵 ◦ 𝜏 = 𝑝 |𝑝−1 (𝑈 ) ;

The total space of 𝑝 is 𝑋 . The base space of 𝑝 is 𝐵. For 𝑏 ∈ 𝐵 the fibre of 𝑝 over 𝑏 is

𝑋𝑏 B 𝑝−1(𝑏). •
This concept formalises the concept of smoothly varying families of manifolds.

Proposition 2.2. Let 𝑝 : 𝑋 → 𝐵 be a fiber bundle. If 𝐵 is connected and 𝑏0, 𝑏1 ∈ 𝐵, then 𝑋𝑏0
and

𝑋𝑏1
are diffeomorphic. ■

Example 2.3. Let 𝐵, 𝐹 be smooth manifolds. The trivial fibre bundle over 𝐵 with fibre 𝐹 is the

projection map pr
1

: 𝐵 × 𝐹 → 𝐵. ♠
Example 2.4. Let 𝑛 ∈ N. The skew fields R,C,H give rise to the Hopf bundles.

(1) The projection 𝑝 : 𝑆𝑛 ⊂ R𝑛+1\{0} → R𝑃𝑛 is a fibre bundle.

(2) The Hopf bundle 𝑝 : 𝑆2𝑛+1 ⊂ C𝑛+1\{0} → C𝑃𝑛 is a fibre bundle.

(3) The quaternionic Hopf bundle 𝑝 : 𝑆4𝑛+3 ⊂ H𝑛+1\{0} → H𝑃𝑛 is a fibre bundle.
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(4) There is a fibre bundle 𝑝 : 𝑆15 → 𝑆8
but a naive construction of a family of octonionic

Hopf bundles does not work. ♠

Example 2.5. Let 𝑋, 𝐵 be smooth manifolds. If 𝑝 : 𝑋 → 𝐵 is a covering map, then it is a fiber

bundle. ♠
Example 2.6. Every smooth vector bundle 𝑝 : 𝐸 → 𝐵 is a fibre bundle. ♠
Example 2.7. Let 𝐸 → 𝐵 be a Euclidean vector bundle. The sphere bundle

𝑝 : 𝑆 (𝑉 ) → 𝐵 with 𝑆 (𝑉 ) ≔ {𝑣 ∈ 𝑉 : |𝑣 | = 1}.

is a fibre bundle. ♠
Example 2.8. Let 𝑝 : 𝐸 → 𝐵 be a vector bundle. For 𝑟 ∈ N0 denote by

Gr𝑟 (𝑉 ) ≔ {(𝑏,Π) : 𝑏 ∈ 𝐵,Π ⊂ 𝑉𝑏 with dimΠ = 𝑟 }

the Grassmannian of 𝑟–planes in 𝑉 . Gr𝑟 (𝑉 ) admits the structure of a smooth manifold such

that the map 𝑞 : Gr𝑟 (𝑉 ) → 𝐵 obtained by restriction of pr
1
is a fibre bundle. ♠

Example 2.9. Let 𝑝 : 𝐸 → 𝐵 be a vector bundle. Denote by

Fr(𝑉 ) ≔ {(𝑏, 𝜙) : 𝑏 ∈ 𝐵, 𝜙 : Rrk𝑏 𝑉 → 𝑉𝑏 isomomorphism}

the frame bundle of 𝐸. Fr(𝐸) admits the structure of a smooth manifold such that the map

𝑞 : Fr(𝐸) → 𝐵 obtained by restriction of pr
1
is a fibre bundle. ♠

Theorem 2.10 (Ehresmann fibration theorem). Every proper submersion 𝑝 : 𝑋 → 𝐵 is a fibre
bundle. ■

Example 2.11. Let 𝑓 : 𝑋 → R be a proper smooth function. If [𝑎, 𝑏] ∩ 𝑓 (Crit(𝑓 )) = ∅, then
𝑓 −1(𝑎) and 𝑓 −1(𝑏) are diffeomorphic. ♠
Corollary 2.12. Deformation equivalent closed complex manifolds are diffeomorphic. ■

2.2 The category of fibre bundles

Definition 2.13. The category of fibre bundles is the full subcategory FibBun ofArr(Sm) whose
objects are fibre bundles. •
Proposition 2.14. FibBun has finite products and arbitrary coproducts. ■

Proposition 2.15. The codomain functor𝑈 : FibBun → Sm is a fibred category.

Proof. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝑓 : 𝐴 → 𝐵 be a smooth map. Since 𝑝 is a submersion,

𝑓 × 𝑝 is transverse to the diagonal Δ ⊂ 𝐵 × 𝐵. Therefore,

𝑓 ∗𝑋 B {(𝑎, 𝑥) ∈ 𝐴 × 𝑋 : 𝑓 (𝑎) = 𝑝 (𝑥)} ⊂ 𝐴 × 𝑋

is a submanifold. Set 𝑝∗ 𝑓 B pr
1

: 𝑓 ∗𝑋 → 𝑋 and 𝑓 ∗𝑝 B pr
2

: 𝑓 ∗𝑋 → 𝐴. Evidently, the

morphism (𝑝∗ 𝑓 , 𝑓 ) : 𝑓 ∗𝑝 → 𝑝 is cartesian. ■
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Definition 2.16. For every fibre bundle 𝑝 : 𝑋 → 𝐵 and every smooth map 𝑓 : 𝐴 → 𝐵 choose a
cartesian lift

𝑓 ∗𝑋 𝑋

𝐴 𝐵.

𝑓 ∗𝑝

𝑝∗ 𝑓

𝑝

𝑓

This is the pullback via 𝑓 •
As in Section 1.3, FibBun𝐵 is a sheaf.

2.3 Ehresmann connections

It is not terribly difficult to prove the following.

Theorem 2.17. If 𝑝 : 𝑋 → 𝐵 is a fibre bundle, then it is a Hurewicz fibration. ■

However, the lifting problem is quite flabby. The following definition helps to rigidify the

lifting problem.

Definition 2.18. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. The vertical tangent bundle of 𝑝 is the vector

bundle

𝑉𝑝 ≔ ker(𝑇𝑝 : 𝑇𝑋 → 𝑝∗𝑇𝐵) → 𝑋 . •

Definition 2.19. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. An Ehresmann connection on 𝑝 is a left

splitting of the short exact sequence of vector bundles

𝑉𝑝
𝜄
↩→ 𝑇𝑋

𝑇𝑝
↠ 𝑝∗𝑇𝐵;

that is: an 𝐴 ∈ Ω1(𝑋,𝑉𝑝) = Γ(𝑋,Hom(𝑇𝑋,𝑉𝑝)) such that

𝐴 ◦ 𝜄 = id𝑉𝑝 .

Denote byA(𝑝) ⊂ Ω1(𝑋,𝑉𝑝) the subset of Ehresmann connections on 𝑝 . •
Example 2.20. Consider the trivial fibre bundle pr𝐵 : 𝐵 × 𝐹 → 𝐵. There is a canonical isomor-

phism𝑇 (𝐵×𝐹 ) � pr
∗
𝐵
𝑇𝐵 ⊕pr

∗
𝐹
𝑇𝐹 with respect to which𝑉pr𝐵

= pr
∗
𝐹
𝑇𝐹 . The product connection

𝐴 on pr𝐵 is the obvious projection. ♠
Example 2.21. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝑔 be a Riemannian metric on 𝑋 . The

orthogonal projection 𝐴𝑔 : 𝑇𝑋 = 𝑉𝑝 ⊕ 𝑉⊥
𝑝 → 𝑉𝑝 is an Ehresmann connection. ♠

Remark 2.22. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. The construction in Example 2.21 induces a map

M𝑒𝑡 (𝑋 ) → A(𝑝). This map is surjective, but very far from injective. ♣
The structure of the spaceA(𝑝) is very simple.

Definition 2.23. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝐸 be a vector bundle over 𝑋 . A differential

form 𝛼 ∈ Ω•(𝑋, 𝐸) is horizontal if for every 𝑣 ∈ 𝑉𝑝

𝑖𝑣𝛼 = 0.

The subspace of horizontal differential forms is denoted by Ω•
hor

(𝑋, 𝐸). •
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Proposition 2.24.A(𝑝) ⊂ Ω1(𝑋,𝑉𝑝) is an affine subspace modelled on Ω1

hor
(𝑋,𝑉𝑝).

Proof. By Example 2.21, there exists an 𝐴0 ∈ A(𝑝). Let 𝐴 ∈ Ω1(𝑋,𝑉𝑝). Evidently, 𝐴 ∈ A(𝑝) if
and only if 𝐴 −𝐴0 ∈ Ω1

hor
(𝑋,𝑉𝑝). ■

Remark 2.25. Informally, the fact thatA(𝑝) is contractible, means that choosing an 𝐴 ∈ A(𝑝) is
mostly harmless. ♣

Ehresmann connections can be pulled-back as follows.

Definition 2.26. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝑓 : 𝐶 → 𝐵 be a smooth map. Denote by

𝑉𝑓 : 𝑉𝑓 ∗𝑝 → (𝑝∗ 𝑓 )∗𝑉𝑝 .

the isomorphism induced by𝑇𝑝∗ 𝑓 : 𝑇 𝑓 ∗𝑋 → (𝑝∗ 𝑓 )𝑇𝑋 . Define the pull-backmap 𝑓 ♯ : A(𝑝) →
A(𝑓 ∗𝑝) by

𝑓 ♯𝐴 B 𝑉 −1

𝑓
(𝑝∗ 𝑓 )∗𝐴. •

2.4 Parallel transport

Definition 2.27. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle together with an Ehresmann connection

𝐴 ∈ A(𝑝). A smooth map 𝑓 : 𝐶 → 𝑋 is 𝐴–horizontal if

𝑓 ∗𝐴 = 0.

Let 𝑓 : 𝐴 → 𝐵 be a smooth map. Denote by HomSm/𝐵 (𝑓 , 𝑝)𝐴 ⊂ HomSm/𝐵 the subset of 𝐴–

horizontal lifts of 𝑓 along 𝑝 . •
The horizontal lifting problem is to determine HomSm/𝐵 (𝑓 , 𝑝)𝐴. The horizontal lifting

problem is rather similar to the lifting problem along covering maps.

Proposition 2.28. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle together with an Ehresmann connection 𝐴 ∈
A(𝑝). Let 𝑓 : 𝐶 → 𝐵 be a smooth map. The map 𝑝∗ 𝑓 ◦ · : HomSm/𝐵 (id𝐶 , 𝑓 ∗𝑝) → HomSm/𝐵 (𝑓 , 𝑝)
induces a bijection HomSm/𝐵 (𝑓 , 𝑝)𝐴 � HomSm/𝐵 (id, 𝑓 ∗𝑝) 𝑓

∗𝐴. ■

Definition 2.29. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle together with an Ehresmann connection

𝐴 ∈ A(𝑝). Let 𝑓 : 𝐶 → 𝐵 be a smooth map. Let 𝑐 ∈ 𝐶 . Set 𝑏 B 𝑓 (𝑐). Define the evaluation
map

ev𝑐 : HomSm/𝐵 (𝑓 , 𝑝)𝐴 → 𝑝−1(𝑏)

by

ev𝑐 ( ˜𝑓 ) B ˜𝑓 (𝑐). •

Proposition 2.30. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle together with an Ehresmann connection
𝐴 ∈ A(𝑝). Let 𝑓 : 𝐶 → 𝐵 be a smooth map. Let 𝑐 ∈ 𝐶 . If 𝐶 is connected, then ev𝑐 is injective.

Proof. Since𝐶 is path-connected, it suffices to prove this for𝐶 = [0, 1]. By the above observation,
it suffices to consider 𝐵 = 𝐶 = [0, 1] and 𝑓 = id𝐵 . There is a unique vector field 𝑣 ∈ Vect(𝑋 )
which is 𝑝–related to 𝜕𝑡 on [0, 1]. A lift

˜𝑓 is 𝐴–horizontal if and only if it is a integral curve of 𝑣 .

The assertion therefore follows from the Picard–Lindelöf Theorem. ■
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Definition 2.31. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. An Ehresmann connection 𝐴 ∈ A(𝑝) is
complete if for every smooth path 𝛾 : [0, 1] → 𝐵 and every 𝑥 ∈ 𝑝−1(𝛾 (0)) there is an 𝐴–

horizontal lift 𝛾 with 𝛾 (0) = 𝑥0. •
Theorem 2.32 (del Hoyo [dHoy16]). Every fibre bundle admits a complete Ehresmann connection.

■

Proposition 2.33. If 𝑝 is a proper fibre bundle, then every 𝐴 ∈ A(𝑝) is complete. ■

Remark 2.34. The attentive reader will have observed that the theory of Ehresmann connections,

discussed so far, does not make use of 𝑝 being a fibre bundle. It would have sufficed to assume

that 𝑝 is a submersion. What singles out fibre bundles is the existence of complete Ehresmann

connections. ♣
Definition 2.35. The path groupoid functor is the functor 𝑃1 : Sm → Gpd defined as follows:

(Ob) Let 𝑋 be a smooth manifold. The path groupoid of 𝑋 is the groupoid 𝑃1(𝑋 ) whose
objects are the elements of 𝑋 , and whose morphism [𝛾] : 𝑥 → 𝑦 are smooth paths

𝛾 : [0, 1] → 𝑋 which are constant in a neighborhood of {0, 1} up to thin homotopy

(i.e.: a homotopy ℎ : [0, 1]2 → 𝑋 with rk𝑇ℎ ⩽ 1), composed by concatenation.

(Hom) Let 𝑓 : 𝑋 → 𝑌 be a smooth map. The natural transformation 𝑃1(𝑓 ) is given by

composition

𝑃1(𝑓 ) [𝛾] B [𝑓 ◦ 𝛾] . •

Definition 2.36. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle together with an Ehresmann connection 𝐴 ∈
A(𝑝). The horizontal path groupoid 𝑃1(𝑋,𝐴) is the subgroupoid of 𝑃1(𝑋 ) whose morphisms

are equivalence classes of 𝐴–horizontal paths. •
Proposition 2.37. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle together with a complete Ehresmann connection
𝐴 ∈ A(𝑝). For every 𝑥 ∈ 𝑋 and 𝑏 ∈ 𝐵 the map∐

𝑦∈𝑝−1 (𝑏 )
Hom𝑃1 (𝑋,𝐴) (𝑥,𝑦) → Hom𝑃1 (𝐵) (𝑝 (𝑥), 𝑏)

induced by 𝑃1(𝑝) is bijective. ■

Definition 2.38. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle together with a complete Ehresmann connection

𝐴 ∈ A(𝑝). The parallel transport is the functor

tra
𝐴

: 𝑃1(𝐵) → Sm

defined by

tra
𝐴 (𝑏) B 𝑝−1(𝑏) and tra

𝐴 ( [𝛾]) (𝑥) B [𝛾 (1)]

with 𝛾 denoting the unique 𝐴–horizontal lift of 𝛾 with 𝛾 (0) = 𝑥 . •
Remark 2.39. To determine tra

𝐴 ( [𝛾]) is to solve an ODE. ♣
Remark 2.40. The fact that is functor goes to Sm instead of Set is the smooth dependence on

initial conditions for solutions of ODE. ♣

27



Definition 2.41. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle together with a complete Ehresmann connection

𝐴 ∈ A(𝑝). Let 𝑏 ∈ 𝐵. The holonomy group of 𝐴 based at 𝑏 is the subgroup Hol𝑏 (𝐴) <

Diff (𝑝−1(𝑏)) defined by

Hol𝑏 (𝐴) ≔
{
tra

𝐴 (𝛾) : 𝛾 ∈ Aut𝑃1 (𝐵) (𝑏)
}
. •

Remark 2.42. In practice, it is not feasible to compute Hol𝑏 (𝐴) from the definition. ♣
Corollary 2.43 (holonomy principle). Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle together with an Ehresmann
connection 𝐴 ∈ A(𝑝). Let 𝑓 : 𝐶 → 𝐵 be a smooth map. Let 𝑐 ∈ 𝐶 . If 𝐶 is connected, then the
evaluation map induces a bijection

ev𝑐 : HomSm/𝐵 (𝑓 , 𝑝)𝐴 → 𝑝−1(𝑏)Aut𝑃
1
(𝐶 ) (𝑐 ) . ■

2.5 The curvature of an Ehresmann connection

Definition 2.44. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝐴 ∈ A(𝑝). The curvature of 𝐴 unique

horizontal 2–form 𝐹𝐴 ∈ Ω2

hor
(𝑋,𝑉𝑝) such that for every 𝑣,𝑤 ∈ Vect(𝑋 )

𝐹𝐴 (𝑣,𝑤) = −𝐴( [𝑣 −𝐴(𝑣),𝑤 −𝐴(𝑤)]). •

Of course, 𝐹𝐴 is the obstruction to the integrability of the horizontal distribution 𝐻𝐴 B
ker𝐴 ⊂ 𝑇𝑋 .
Example 2.45. Consider the Hopf bundle 𝑝 : 𝑆2𝑛+1 ⊂ C𝑛+1\{0} → C𝑃𝑛 . The vertical tangent
bundle is spanned by the vector field 𝜕𝛼 ∈ Vect(𝑆𝑛+1) defined by

𝜕𝛼 (𝑧) = 𝑖𝑧.

The connection 𝐴 defines by the metric on 𝑆2𝑛+1
satisfies

𝐻𝐴 = {𝑣 ∈ 𝑇𝑆2𝑛+1
: 𝑣 ⊥ 𝜕𝛼 }.

Let 𝑣,𝑤 ∈ Vect(𝑆2𝑛+1) The curvature of 𝐴 is

𝐹𝐴 (𝑣,𝑤) = −⟨[𝑣,𝑤], 𝑖𝑧⟩ ⊗ 𝑖𝑧
= −⟨∇𝑣𝑤 − ∇𝑤𝑣, 𝑖𝑧⟩ ⊗ 𝑖𝑧
= −2⟨𝑣, 𝑖𝑤⟩ ⊗ 𝑖𝑧
= −2𝜋 · 𝑝∗𝜔FS ⊗ 𝜕𝛼 .

Here 𝜔FS ∈ Ω2(C𝑃𝑛) is the Fubini–Study form on C𝑃𝑛 . ♠
Exercise 2.46. Let𝑈𝑎 ≔ {[𝑧0, . . . , 𝑧𝑛] ∈ C𝑃𝑛 : 𝑧𝑎 ≠ 0} and define 𝜙𝑎 : 𝑈𝑎 → C𝑛 by

𝜙 ( [𝑧0, . . . , 𝑧𝑛]) ≔ [𝑧0/𝑧𝑎 : · · · :
�𝑧𝑎/𝑧𝑎 : · · · : 𝑧𝑛/𝑧𝑎] .

Prove that there is a unique 2–form 𝜔FS on C𝑃𝑛 satisfying

(𝜙𝑎)∗𝜔FS =
𝑖

2𝜋

(
𝑛∑︁
𝑏=1

d𝑧𝑏 ∧ d𝑧𝑏

1 + |𝑧 |2 −
𝑛∑︁

𝑏,𝑐=1

𝑧𝑐d𝑧𝑐 ∧ 𝑧𝑏d𝑧𝑏

(1 + |𝑧 |2)2

)
.

Prove that the above formula for 𝐹𝐴 indeed holds.
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Proposition 2.47. Let 𝑝 : 𝑋 → 𝐵 be fibre bundle. Let 𝐴 ∈ A(𝑝). Let 𝑓 : 𝐶 → 𝐵 be a smooth map.
The curvature of 𝐴 and 𝑓 ∗𝐴 satisfy

𝐹𝑓 ∗𝐴 = 𝑉 −1

𝑓
(𝑝∗ 𝑓 )∗𝐹𝐴 .

Definition 2.48. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. An Ehresmann connection 𝐴 ∈ A(𝑝) is flat if
𝐹𝐴 = 0. •
Example 2.49. Let 𝑝 : 𝑋 → 𝐵 be a smooth covering map. The unique Ehresmann connection

on 𝑝 is flat. ♠
Example 2.50 ([MS74, Appendix C]). Let Σ be a closed, connected Riemann surface of genus

𝑔 ⩾ 2. The fibre bundle 𝑝 : 𝑆𝑇Σ → Σ admits a flat connection.

By the uniformization theorem, there is a Γop < PSL(2,R) = Isom(𝐻 ) with Σ = 𝐻/Γ. In
particular, 𝑆𝑇Σ = 𝑆𝑇𝐻/Γ. Define 𝑃 : 𝑆𝑇𝐻 → 𝐻 × (R ∪ {∞}) by

𝑃 (𝑧, 𝑣) ≔ lim

𝑡→∞
exp𝑥 (𝑡𝑣) .

Here exp𝑥 is computed with respect to the hyperbolic metric 𝑔−1 on 𝐻 . PSL(2,R) acts on
R ∪ {∞} � 𝑆1

. A moment’s thought shows that 𝑃 is PSL2(R)–equivariant. Therefore,
𝑆𝑇Σ = 𝑆𝑇𝐻/Γ � (𝐻 × (R ∪ {∞}))/Γ.

The flat Ehresmann connection on pr
1

: 𝐻 × (R∪{∞}) → H is PSL2(R)–invariant and descends
to 𝑝 : 𝑆𝑇Σ → Σ. ♠
Proposition 2.51 (Flat connections and covering maps). Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. If
𝐴 ∈ A(𝑝) is complete and flat, then there is a covering map 𝑞 : 𝑆 → 𝐵 and a bijective immersion
𝜄 : 𝑆 ↬ 𝑋 such that 𝑞 = 𝑝 ◦ 𝜄 and 𝑇𝜄 : 𝑇𝑆 ↩→ 𝜄∗𝑇𝑋 induces an isomorphism 𝑇𝑆 � 𝜄∗𝐻𝐴; in
particular: tra

𝐴 depends only on the homotopy class rel {0, 1} of 𝛾 ; that is tra
𝐴 factors through

𝑃1(𝐵) → Π1(𝐵).

Proof. 𝐴 is flat if and only if the distribution𝐻𝐴 is involutive. Frobenius’s theorem guarantees the

existence of a bijective immersion 𝜄 : 𝑆 ↬ 𝑋 such that𝑇𝜄 : 𝑇𝑆 ↩→ 𝜄∗𝑇𝑋 induces an isomorphism

𝑇𝑆 � 𝜄∗𝐻𝐴.
To prove that 𝑞 ≔ 𝑝 ◦ 𝜄 is a covering map, let 𝑏0 ∈ 𝐵 and let 𝑈 be a connected, simply-

connected, open neighborhood of 𝑏0. Let 𝑉 be a connected component of 𝑆 ∩ 𝜄−1(𝑈 ). It

remains to prove that 𝑞 |𝑉 : 𝑉 → 𝑈 is a diffeomorphism. By construction, 𝑞 |𝑉 is a local

diffeomorphism. Since 𝑈 is path-connected, 𝑞 |𝑉 is surjective. To prove that 𝑞 |𝑉 is injective,

let 𝑠0, 𝑠1 ∈ 𝑞−1(𝑏0) ∩ 𝑉 . Since 𝑉 is path-connected, there is a smooth path 𝛾 : [0, 1] → 𝑆

with 𝛾 (0) = 𝑠0 and 𝛾 (1) = 𝑠1. Since 𝑈 is simply-connected, there is a smooth homotopy

Γ : [0, 1] × [0, 1] → 𝐵 rel {0, 1} with Γ(0, ·) = 𝑞 ◦ 𝛾 and Γ(1, ·) = 𝑏0. The task at hand is to find

an 𝐴–horizontal lift Γ̃ : [0, 1] × [0, 1] → 𝑋 of Γ along 𝑝 with Γ̃(0, 0) = 𝑥0 ≔ 𝜄 (𝑠0).
It suffices to consider 𝐵 = [0, 1] × [0, 1] and 𝛾 = id𝐵 . Denote by 𝑣1, 𝑣2 the 𝐴–horizontal lifts

of 𝜕1, 𝜕2. The lift

Γ̃(𝑡1, 𝑡2) ≔ flow
𝑡1
𝑣1

◦ flow
𝑡2
𝑣2

(𝑥0)
maps into the maximal integral submanifold through 𝑥0; hence, it is 𝐴–parallel. ■

Proposition 2.52. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. If there is a flat Ehresmann connection
𝐴 ∈ A(𝑝) and 𝐵 is simply-connected, then 𝑝 is isomorphic to a trivial fibre bundle. ■
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2.6 Decomposition of the de Rham complex on fibre bundles

Definition 2.53. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle together with an Ehresmann connection

𝐴 ∈ A(𝑝). The bi-grading on Ω(𝑋 ) induced by 𝐴 is defined by

Ω
𝑝,𝑞

𝐴
(𝑋 ) B Γ(Λ𝑝,𝑞

𝐴
𝑇 ∗𝑋 ). with Λ

𝑝,𝑞

𝐴
𝑇 ∗𝑋 ≔ Λ𝑝𝐻 ∗

𝐴 ⊗ Λ𝑞𝑉 ∗
𝑝 .

Denote by d
𝑝,𝑞

𝐴
the component of d of bi-degree (𝑝, 𝑞). •

Proposition 2.54. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle together with an Ehresmann connection. The
exterior derivative decomposes into three components of bidegree (1, 0), (0, 1), and (2,−1):

d = d
1,0

𝐴
+ d

0,1

𝐴
+ d

2,−1

𝐴
;

moreover:
d

2,−1

𝐴
= 𝑖𝐹𝐴 .

where 𝑖𝐹𝐴 is the graded derivation of degree 1 on Ω(𝑋 ) defined by

𝑖𝐹𝐴 𝑓 = 0 and 𝑖𝐹𝐴𝛼 = 𝛼 ◦ 𝐹𝐴 .

Proof. The exterior derivative d is a graded derivation of Ω•(𝑋 ) of degree 1. Consequently,

d
𝑝,𝑞

𝐴
= 0 vanishes unless 𝑝 + 𝑞 = 1. Since a graded derivation of Ω•(𝑋 ) is determined by its

restriction to Ω0(𝑋 ) ⊕ Ω1(𝑋 ), d
𝑝,𝑞

𝐴
= 0 unless 𝑝, 𝑞 ⩾ −1.

Evidently, d
−1,2

𝐴
vanishes on Ω0(𝑋 ) ⊕ Ω0,1

𝐴
(𝑋 ). Moreover, for every 𝛼 ∈ Ω1,0

𝐴
and 𝑣,𝑤 ∈

Vect(𝑋 )

(d−1,2

𝐴
𝛼) (𝑣,𝑤) = (d𝛼) (𝐴(𝑣), 𝐴(𝑤))

= −𝛼 ( [𝐴(𝑣), 𝐴(𝑤)]) = 0.

Therefore, d
−1,2

𝐴
= 0.

Evidently, d
2,−1

𝐴
vanishes on Ω0(𝑋 ) ⊕ Ω1,0

𝐴
(𝑋 ). Moreover, for every 𝛼 ∈ Ω0,1

𝐴
and 𝑣,𝑤 ∈

Vect(𝑋 ),

(d−1,2

𝐴
𝛼) (𝑣,𝑤) = (d𝛼) (𝑣 −𝐴(𝑣), 𝑣 −𝐴(𝑤))

= −𝛼 (𝐴[𝑣 −𝐴(𝑣),𝑤 −𝐴(𝑤)])
= (𝑖𝐹𝐴𝛼) (𝑣,𝑤) . ■

Remark 2.55. Proposition 2.54 is a justification for the sign appearing in the definition of 𝐹𝐴. ♣
The following is an immediate consequence of d

2 = 0.

Proposition 2.56. The operators d
1,0

𝐴
, d

0,1

𝐴
, d

2,−1

𝐴
satisfy(

d
1,0

𝐴

)
2 + d

0,1

𝐴
d

2,−1

𝐴
+ d

2,−1

𝐴
d

0,1

𝐴
= 0,(

d
0,1

𝐴

)
2

= 0,(
d

2,−1

𝐴

)
2

= 0,

d
1,0

𝐴
d

0,1

𝐴
+ d

0,1

𝐴
d

1,0

𝐴
= 0, and

d
1,0

𝐴
d

2,−1

𝐴
+ d

2,−1

𝐴
d

1,0

𝐴
= 0.

■
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Remark 2.57.

(1) d
1,0

𝐴
d

2,−1

𝐴
+ d

2,−1

𝐴
d

1,0

𝐴
is the Bianchi identity.

(2) d
0,1

𝐴
and d

2,−1

𝐴
are differentials, but d

1,0

𝐴
is not. However, it descends to a differential on

H(Ω(𝑋 ), d0,1

𝐴
) and on H(Ω(𝑋 ), d2,−1

𝐴
). ♣

2.7 Digression: The Fröhlicher–Nijenhuis bracket

This section is a slight digression on the Fröhlicher–Nijenhuis bracket. This provides some

context but is not necessary. [KMS93, §8] contains a more detailed treatment of the material

discussed below.

Definition 2.58. Let 𝑘 ∈ Z. A graded derivation of degree 𝑘 on Ω•(𝑋 ) is an R–linear map

𝛿 : Ω•(𝑋 ) → Ω•+𝑘 (𝑋 ) satisfying the graded Leibniz rule

𝛿 (𝛼 ∧ 𝛽) = (𝛿𝛼) ∧ 𝛽 + (−1)𝑘 ·ℓ𝛼 ∧ (𝛿𝛽)

for every 𝛼 ∈ Ωℓ (𝑋 ), 𝛽 ∈ Ω•(𝑋 ). The graded derivations of Ω•(𝑋 ) form a graded Lie algebra

Der•(Ω•(𝑋 )). •
Exercise 2.59. Verify the last sentence in the above definition.

Example 2.60. The exterior derivative d is a graded derivation of degree 1 of Ω•(𝑋 ). If 𝑣 ∈
Vect(𝑋 ), then 𝑖𝑣 is a graded derivation of degree −1 of Ω•

. By Cartan’s formula, their graded

commutator is the Lie derivative

L𝑣 = d𝑖𝑣 + 𝑖𝑣d = [𝑖𝑣, d];

itself a graded derivation of degree 0. ♠
The derivations of 𝐶∞(𝑋 ) are precisely the vector fields on 𝑋 : Der(𝐶∞(𝑋 )) � Vect(𝑋 ). Is

there an analogous result for Der•(Ω•(𝑋 ))?
Definition 2.61. Let 𝑘 ∈ N0. Denote by 𝑖 · : Ω𝑘+1(𝑋,𝑇𝑋 ) → Der𝑘 (Ω•(𝑋 )) the unique linear map

satisfying

𝑖𝜉⊗𝑣𝛼 = 𝜉 ∧ 𝑖𝑣𝛼 for 𝜉 ∈ Ω𝑘+1(𝑋 ) and 𝑣 ∈ Vect(𝑋 ) .

DefineL· : Ω𝑘 (𝑋,𝑇𝑋 ) → Der𝑘 (Ω•(𝑋 )) by

LΞ ≔ [𝑖Ξ, d] . •

Exercise 2.62. Prove that 𝜄 and L are injective.

Exercise 2.63. For Ξ =
∑
𝑖 𝜉𝑖 ⊗ 𝑣𝑖 ∈ Ω𝑘 (𝑋,𝑇𝑋 ) prove that

LΞ𝛼 =
∑︁
𝑖

𝜉𝑖 ∧L𝑣𝑖𝛼 + (−1)𝑘 (d𝜉𝑖) ∧ 𝑖𝑣𝑖𝛼.

Proposition 2.64. Let 𝑋 be a smooth manifold. Let 𝑘 ∈ Z. The map L + 𝜄 : Ω𝑘 (𝑋,𝑇𝑋 ) ⊕
Ω𝑘+1(𝑋,𝑇𝑋 ) → Der𝑘 (Ω•(𝑋 )) is an isomorphism. Moreover, 𝛿 ∈ imL if and only if [𝛿, d] = 0;
and 𝜀 ∈ imL if and only if 𝜀 (Ω0(𝑋 )) = 0.
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Proof. Every 𝛿 ∈ Der𝑘 (Ω•(𝑋 )) is determined by its restriction to Ω0(𝑋 ) ⊕ Ω1(𝑋 ). If 𝑣1, . . . , 𝑣𝑘 ,

then the map

𝑓 ↦→ (𝛿 𝑓 ) (𝑣1, . . . , 𝑣𝑘 )

is a derivation of Ω0(𝑋 ) = 𝐶∞(𝑋 ). Hence, there is a unique vector field Ξ(𝑣1, . . . , 𝑣𝑘 ) such that

(𝛿 𝑓 ) (𝑣1, . . . , 𝑣𝑘 ) = LΞ(𝑣1,...,𝑣𝑘 ) 𝑓 .

A moment’s thought shows that (𝑣1, . . . , 𝑣𝑘 ) ↦→ Ξ(𝑣1, . . . , 𝑣𝑘 ) is tensorial. Therefore, it defines a
Ξ ∈ Ω𝑘 (𝑋,𝑇𝑋 ). The derivation 𝜀 ≔ 𝛿 −LΞ vanishes on Ω0(𝑋 ).

If 𝑓 ∈ 𝐶∞(𝑋 ) and 𝛼 ∈ Ω1(𝑋 ), then

𝜀 (𝑓 𝛼) = 𝑓 · 𝜀𝛼 ;

that is: 𝜀 : Ω1(𝑋 ) → Ω𝑘 (𝑋 ) is tensorial. Therefore, there is a Θ ∈ Ω𝑘 (𝑋,𝑇𝑋 ) with 𝜀 = 𝑖Θ.
By construction, 𝛿 = 𝑖Θ + LΞ on Ω0(𝑋 ) ⊕ Ω1(𝑋 ). This proves the first assertion. The

vanishing criterion for Θ is obvious. A brief computation shows that [LΞ, d] = 0. Since

[𝑖Θ, d] = LΘ,

the final assertion follows. ■

Exercise 2.65. What are Θ and Ξ for 𝛿 = d?

Exercise 2.66. Use Proposition 2.64 to prove Cartan’s formulaL𝑣 = d𝑖𝑣 + 𝑖𝑣d.
The identification can be used to define the Lie bracket [·, ·] on Vect(𝑋 ). Since

[[LΘ,LΞ], d] = 0,

one obtains a graded Lie bracket on Ω•(𝑋,𝑇𝑋 ).
Definition 2.67. The Fröhlicher–Nijenhuis bracket is the map

[·, ·] : Ω•(𝑋,𝑇𝑋 ) ⊗ Ω•(𝑋,𝑇𝑋 ) → Ω•(𝑋,𝑇𝑋 )

characterised by

[LΘ,LΞ] = L[Θ,Ξ] . •

It turns out (somewhat miraculously in my opinion) that Fröhlicher–Nijenhuis bracket

consistently shows up as an obstruction to integrability.

Proposition 2.68. If 𝜃 ∈ Ω1(𝑋,𝑇𝑋 ), then the Nijenhuis tensor

𝑁𝜃 ≔ −1

2

[𝜃, 𝜃 ] ∈ Ω2(𝑋,𝑇𝑋 )

satisfies
𝑁𝜃 (𝑣,𝑤) = −𝜃 (𝜃 ( [𝑣,𝑤])) − [𝜃 (𝑣), 𝜃 (𝑤)] + 𝜃 ( [𝜃 (𝑣),𝑤] + [𝑣, 𝜃 (𝑤)]).

The proof relies on the following.
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Proposition 2.69. For 𝜃, 𝛼 ∈ Ω1(𝑋,𝑇𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 )

(L𝜃𝛼) (𝑣,𝑤) = L𝜃 (𝑣) (𝛼 (𝑤)) −L𝜃 (𝑤 ) (𝛼 (𝑣)) − 𝛼 ( [𝜃 (𝑣),𝑤]) − 𝛼 ( [𝑣, 𝜃 (𝑤)]) + 𝛼 (𝜃 ( [𝑣,𝑤])).

Proof. Let 𝜃, 𝛼 ∈ Ω1(𝑋,𝑇𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 ). Since

(d𝛼) (𝑣,𝑤) = L𝑣 (𝛼 (𝑤)) −L𝑤 (𝛼 (𝑣)) − 𝛼 ( [𝑣,𝑤]),

by definition ofL𝜃 ,

(L𝜃𝛼) (𝑣,𝑤) = (𝑖𝜃d𝛼 − d𝑖𝜃𝑎) (𝑣,𝑤)
= L𝜃 (𝑣) (𝛼 (𝑤)) −L𝑤 (𝛼 (𝜃 (𝑣))) − 𝛼 ( [𝜃 (𝑣),𝑤])
+L𝑣 (𝛼 (𝜃 (𝑤))) −L𝜃 (𝑤 ) (𝛼 (𝑣)) − 𝛼 ( [𝑣, 𝜃 (𝑤)])
−L𝑣 (𝛼 (𝜃 (𝑤))) +L𝑤 (𝛼 (𝜃 (𝑣))) + 𝛼 (𝜃 ( [𝑣,𝑤]))

= L𝜃 (𝑣) (𝛼 (𝑤)) − 𝛼 ( [𝜃 (𝑣),𝑤])
−L𝜃 (𝑤 ) (𝛼 (𝑣)) − 𝛼 ( [𝑣, 𝜃 (𝑤)])
+ 𝛼 (𝜃 ( [𝑣,𝑤])) . ■

Proof of Proposition 2.68. 𝑁𝜃 ∈ Ω2(𝑋,𝑇𝑋 ) is determined by the action on Ω0(𝑋 ) = 𝐶∞(𝑋 ). For
𝜃 ∈ Ω𝑘 (𝑇𝑋,𝑋 )

(L𝜃 𝑓 ) (𝑣1, . . . , 𝑣𝑘 ) = L𝜃 (𝑣1,...,𝑣𝑘 ) 𝑓 ;

in particular, (L𝜃 𝑓 ) (𝑣) = L𝜃 (𝑣) 𝑓 . Therefore, using Proposition 2.69,

(L𝜃L𝜃 𝑓 ) (𝑣,𝑤) = L𝜃 (𝑣)L𝜃 (𝑤 ) 𝑓 −L𝜃 ( [𝜃 (𝑣),𝑤 ] ) 𝑓

−L𝜃 (𝑤 )L𝜃 (𝑣) 𝑓 −L𝜃 ( [𝑣,𝜃 (𝑤 ) ] ) 𝑓

+L𝜃 (𝜃 ( [𝑣,𝑤 ] ) ) 𝑓

= L[𝜃 (𝑣),𝜃 (𝑤 ) ] 𝑓 −L𝜃 ( [𝜃 (𝑣),𝑤 ] ) 𝑓

−L𝜃 ( [𝑣,𝜃 (𝑤 ) ] ) 𝑓 +L𝜃 (𝜃 ( [𝑣,𝑤 ] ) ) 𝑓 .

This implies the assertion. ■

Remark 2.70. If 𝐽 ∈ End(𝑇𝑋 ) is an almost complex structure (that is: 𝐽 2 = −1), then the

vanishing of 𝑁 𝐽 characterises the integrability of 𝐽 . Indeed, the Newlander–Nirenberg theorem

asserts that 𝑁 𝐽 = 0 if and only if 𝑋 admits a holomorphic structure which induces the almost

complex structure 𝐽 . ♣
Exercise 2.71. Let 𝑝 : 𝑋 → 𝐵 be fibre bundle. Let 𝐴 ∈ A(𝑝). Regard the connection 1–form

𝐴 : Ω1(𝑋,𝑉𝑝) as 𝑇𝑋–valued 1–form. Prove that

𝐹𝐴 = 𝑁𝐴

Remark 2.72. The graded Jacobi identity implies the Bianchi identity

[𝐴, 𝐹𝐴] = 0. ♣
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Definition 2.73. Let 𝑋,𝑌 be smooth manifolds Let 𝑓 : 𝑋 → 𝑌 be a smooth map. Θ ∈ Ω𝑘 (𝑋,𝑇𝑋 )
and Ξ ∈ Ω𝑘 (𝑌,𝑇𝑌 ) are 𝑓 –related if for every 𝑥 ∈ 𝑋 , 𝑣1, . . . , 𝑣𝑘 ∈ 𝑇𝑥𝑋

𝑇𝑥 𝑓 (Θ(𝑣1, . . . , 𝑣𝑘 )) = Ξ(𝑇𝑥 𝑓 (𝑣1), . . . ,𝑇𝑥 𝑓 (𝑣𝑘 )) . •

Proposition 2.74. Let 𝑋,𝑌 be smooth manifolds Let 𝑓 : 𝑋 → 𝑌 be a smooth map. Let Θ1,Θ2 ∈
Ω•(𝑋,𝑇𝑋 ) and Ξ1,Ξ2 ∈ Ω•(𝑌,𝑇𝑌 ). If Θ𝑖 and Ξ𝑖 are 𝑓 –related, then [Θ1,Θ2] and [Ξ1,Ξ2] are
𝑓 –related.

Proof. Exercise. ■

Proposition 2.75. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝐴 ∈ A(𝑝). The operators d
1,0

𝐴
, d

0,1

𝐴
, d

2,−1

𝐴

satisfy
d

1,0

𝐴
= Lid𝑇𝑋 −𝐴 − 2𝑖𝐹𝐴 , d

0,1

𝐴
= L𝐴 + 𝑖𝐹𝐴 , and d

2,−1

𝐴
= 𝑖𝐹𝐴 .

Proof. The next two steps determine explicit formulae for d
1,0

𝐴
and d

0,1

𝐴
. The computations are

longish and not particularly illuminating.

Step 1. d
1,0

𝐴
= Lid𝑇𝑋 −𝐴 − 2𝑖𝐹𝐴 .

It suffices to verify the identity on 𝐶∞(𝑋 ) and Ω1(𝑋 ).
For 𝑓 ∈ 𝐶∞(𝑋 )

d
1,0

𝐴
𝑓 = d𝑓 ◦ (id𝑇𝑋 −𝐴)
= (Lid𝑇𝑋 −𝐴 − 2𝑖𝐹𝐴) 𝑓 .

For 𝛼 ∈ Ω1(𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 )

(Lid𝑇𝑋 −𝐴𝛼) (𝑣,𝑤) = L𝑣−𝐴(𝑣) (𝛼 (𝑤)) −L𝑤−𝐴(𝑤 ) (𝛼 (𝑣))
− 𝛼 ( [𝑣 −𝐴(𝑣),𝑤]) − 𝛼 ( [𝑣,𝑤 −𝐴(𝑤)]) + 𝛼 ( [𝑣,𝑤] −𝐴( [𝑣,𝑤])).

For 𝛼 ∈ Ω1,0

𝐴
(𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 ), since 𝛼 ◦ 𝜃 = 0,

(d1,0

𝐴
𝛼) (𝑣,𝑤) = d𝛼 (𝑣 −𝐴(𝑣),𝑤 −𝐴(𝑤))

= L𝑣−𝐴(𝑣) (𝛼 (𝑤)) −L𝑤−𝜃 (𝑤 ) (𝛼 (𝑣)) − 𝛼 ( [𝑣 − 𝜃𝑎 (𝑣),𝑤 − 𝜃𝑎 (𝑤)])
= (Lid𝑇𝑋 −𝐴𝛼 − 2𝑖𝐹𝐴𝛼) (𝑣,𝑤)
+ 𝛼 ( [𝑣 −𝐴(𝑣),𝑤]) + 𝛼 ( [𝑣,𝑤 −𝐴(𝑤)])
− 𝛼 ( [𝑣,𝑤]) − 𝛼 ( [𝑣 − 𝜃𝑎 (𝑣),𝑤 − 𝜃𝑎 (𝑤)]) .

The sum of the last four term vanishes because

[𝑣 −𝐴(𝑣),𝑤] + [𝑣,𝑤 −𝐴(𝑤)] − [𝑣,𝑤] − [𝑣 − 𝜃𝑎 (𝑣),𝑤 − 𝜃𝑎 (𝑤)] = −[𝐴(𝑣), 𝐴(𝑤)]

is a vertical vector field.
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For 𝛼 ∈ Ω0,1

𝐴
(𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 ), since 𝛼 ◦ 𝜃 = 𝛼 ,

d
1,0

𝐴
𝛼 (𝑣,𝑤) = d𝛼 (𝐴(𝑣),𝑤 −𝐴(𝑤)) + d𝛼 (𝑣 −𝐴(𝑣), 𝐴(𝑤))

= L𝑣−𝐴(𝑣) (𝛼 (𝑤)) −L𝑤−𝐴(𝑤 ) (𝛼 (𝑣))
− 𝛼 ( [𝜃𝑎 (𝑣),𝑤 − 𝜃𝑎 (𝑤)]) − 𝛼 ( [𝑣 − 𝜃𝑎 (𝑣), 𝜃𝑎 (𝑤)])

=
(
Lid𝑇𝑋 −𝐴𝛼 − 2𝑖𝐹𝐴𝛼

)
(𝑣,𝑤)

+ 𝛼 ( [𝑣 −𝐴(𝑣),𝑤]) + 𝛼 ( [𝑣,𝑤 −𝐴(𝑤)])
− 2𝛼 ( [𝑣 −𝐴(𝑣),𝑤 − 𝜃 (𝑤)]
− 𝛼 ( [𝜃𝑎 (𝑣),𝑤 − 𝜃𝑎 (𝑤)]) − 𝛼 ( [𝑣 − 𝜃𝑎 (𝑣), 𝜃𝑎 (𝑤)]).

The sum of the last five terms vanishes.

Step 2. d
0,1

𝐴
= L𝐴 + 𝑖𝐹𝐴 .

For 𝑓 ∈ 𝐶∞(𝑋 )

d
0,1

𝐴
𝑓 = d𝑓 ◦𝐴
= (L𝐴 + 𝑖𝐹𝐴) 𝑓 .

For 𝛼 ∈ Ω1(𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 )

(L𝐴𝛼) (𝑣,𝑤) = L𝐴(𝑣) (𝛼 (𝑤)) −L𝐴(𝑤 ) (𝛼 (𝑣))
− 𝛼 ( [𝐴(𝑣),𝑤]) − 𝛼 ( [𝑣, 𝐴(𝑤)]) + 𝛼 (𝐴( [𝑣,𝑤])).

For 𝛼 ∈ Ω1,0

𝐴
(𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 ), since 𝛼 ◦ 𝜃 = 0,

(d0,1

𝐴
𝛼) (𝑣,𝑤) = d𝛼 (𝐴(𝑣),𝑤 −𝐴(𝑤)) + d𝛼 (𝑣 −𝐴(𝑣), 𝐴(𝑤))

= L𝐴(𝑣) (𝛼 (𝑤)) −L𝐴(𝑤 ) (𝛼 (𝑣))
− 𝛼 ( [𝐴(𝑣),𝑤 −𝐴(𝑤)]) − 𝛼 ( [𝑣 −𝐴(𝑣), 𝐴(𝑤)])

= (L𝐴𝛼 + 𝑖𝐹𝐴𝛼) (𝑣,𝑤)
+ 𝛼 ( [𝐴(𝑣),𝑤]) + 𝛼 ( [𝑣, 𝐴(𝑤)])
− 𝛼 ( [𝐴(𝑣),𝑤 −𝐴(𝑤)]) − 𝛼 ( [𝑣 −𝐴(𝑣), 𝐴(𝑤)]).

The sum of the last four term vanishes because

[𝐴(𝑣),𝑤] + [𝑣, 𝐴(𝑤)] − [𝐴(𝑣),𝑤 −𝐴(𝑤)] − [𝑣 −𝐴(𝑣), 𝐴(𝑤)] = 2[𝐴(𝑣), 𝐴(𝑤)]

is a vertical vector field.

For 𝛼 ∈ Ω0,1

𝐴
(𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 ), since 𝛼 ◦ 𝜃 = 𝛼 ,

(d0,1

𝐴
𝛼) (𝑣,𝑤) = d𝛼 (𝐴(𝑣), 𝐴(𝑤))

= L𝐴(𝑣) (𝛼 (𝑤)) −L𝜃 (𝑤 ) (𝛼 (𝑣)) − 𝛼 ( [𝐴(𝑣), 𝐴(𝑤)])
= (L𝐴𝛼 + 𝑖𝐹𝐴𝛼) (𝑣,𝑤)
+ 𝛼 ( [𝐴(𝑣),𝑤]) + 𝛼 ( [𝑣, 𝐴(𝑤)]) − 𝛼 ( [𝑣,𝑤])
+ 𝛼 ( [𝑣 −𝐴(𝑣),𝑤 −𝐴(𝑤)]) − 𝛼 ( [𝐴(𝑣), 𝐴(𝑤)]).

The sum of the last five term vanishes. ■
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2.8 The spectral sequence of a filtered complex

Here is some homological algebra in preparation of the Leray–Serre spectral sequence; see, e.g.,

[Wei94, §5.4].

Definition 2.76. A spectral sequence is a sequence

(𝐸𝑟 , d𝑟 )𝑟 ∈N0

of Z2
–graded complexes such that, for every 𝑟 ∈ N0, d𝑟 has bidegree (𝑟,−𝑟 + 1) and

H(𝐸𝑟 ) � 𝐸𝑟+1.

The spectral sequence degenerates if d𝑟 = 0 for 𝑟 ≫ 1. In this case, 𝐸∞ denotes a bigraded

vector space with 𝐸∞ � 𝐸𝑟 for 𝑟 ≫ 1. •
Definition 2.77. Let (𝐶, d) be a Z–graded complex. A descending filtration of (𝐶, d) is a de-
scending sequence of subcomplexes (𝐹 𝑗𝐶) 𝑗∈Z:

𝐶 ⊃ · · · ⊃ 𝐹 𝑗𝐶 ⊃ 𝐹 𝑗+1𝐶 ⊃ · · · .

The filtration 𝐹𝐶 is bounded if 𝐹 𝑗𝐶 = 𝐶 for 𝑗 ≪ 1 and 𝐹 𝑗𝐶 = 0 for 𝑗 ≫ 1. The associated
Z2–graded complex of (𝐹𝐶, d) is

Gr𝐶 =
⊕
𝑝,𝑞∈Z

Gr
𝑝 𝐶𝑞 with Gr

𝑝 𝐶𝑞 B 𝐹𝑝𝐶𝑞/𝐹𝑝+1𝐶𝑞

equipped with the differential of bidegree (0, 1) induced by d. •
Lemma 2.78 (Spectral sequence of a filtered differential Z–graded module). Let (𝐶,𝑑) be a
Z–graded differential module equipped with a descending filtration 𝐹𝐶 . For 𝑝, 𝑞, 𝑟 ∈ Z set

𝑍
𝑝,𝑞
𝑟 B 𝐹𝑝𝐶𝑝+𝑞 ∩ d

−1(𝐹𝑝+𝑟𝐶𝑝+𝑞+1) and

𝐵
𝑝,𝑞
𝑟 B d𝑍

𝑝−𝑟+1,𝑞+𝑟−2

𝑟−1
= 𝐹𝑝𝐶𝑝+𝑞 ∩ d(𝐹𝑝−𝑟+1𝐶𝑝+𝑞−1) .

There is a spectral sequence (𝐸𝑟 , d𝑟 ) with

𝐸
𝑝,𝑞
𝑟 =

𝑍
𝑝,𝑞
𝑟

𝐵
𝑝,𝑞
𝑟 + 𝑍𝑝+1,𝑞−1

𝑟−1

and d𝑟 [𝑥] = [d𝑥];

in particular,
𝐸
𝑝,𝑞

1
= H

𝑝,𝑞 (Gr
𝑝 𝐶, d) .

If 𝐹𝐶 is bounded, then (𝐸𝑟 , d𝑟 ) degenerates and

𝐸
𝑝,𝑞
∞ � Gr

𝑝
H
𝑝+𝑞 (𝐶, d) .

Proof. Since d𝑍
𝑝,𝑞
𝑟 ⊂ 𝑍

𝑝+𝑟,𝑞−𝑟+1

𝑟 , d𝐵
𝑝,𝑞
𝑟 = 0, and d𝑍

𝑝+1,𝑞−1

𝑟−1
⊂ d𝑍

𝑝+𝑟+1,𝑞−𝑟
𝑟−1

, d descends to

d
𝑝,𝑞
𝑟 : 𝐸

𝑝,𝑞
𝑟 → 𝐸

𝑝+𝑟,𝑞−𝑟+𝑞
𝑟 .
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By construction,

im d
𝑝−𝑟,𝑞+𝑟−1

𝑟 =
𝐵
𝑝,𝑞

𝑟+1
+ 𝑍𝑝+1,𝑞−1

𝑟−1

𝐵
𝑝,𝑞
𝑟 + 𝑍𝑝+1,𝑞−1

𝑟−1

.

A moment’s thought reveals that

ker d
𝑝,𝑞
𝑟 =

𝑍
𝑝,𝑞

𝑟+1
+ 𝑍𝑝+1,𝑞−1

𝑟−1

𝐵
𝑝,𝑞
𝑟 + 𝑍𝑝+1,𝑞−1

𝑟−1

.

Moreover, since 𝑍
𝑝,𝑞

𝑟+1
∩ 𝑍𝑝+1,𝑞−1

𝑟−1
= 𝑍

𝑝+1,𝑞−1

𝑟 ,

ker d
𝑝,𝑞
𝑟

im d
𝑝−𝑟,𝑞+𝑟−1

𝑟

�
𝑍
𝑝,𝑞

𝑟+1
+ 𝑍𝑝+1,𝑞−1

𝑟−1

𝐵
𝑝,𝑞

𝑟+1
+ 𝑍𝑝+1,𝑞−1

𝑟−1

� 𝐸
𝑝,𝑞

𝑟+1
.

This establishes the existence of the desired spectral sequence.

It remains to establish the convergence if 𝐹𝐶 is bounded. To this end it suffices to observe

that, for 𝑟 ≫ 1, 𝑍
𝑝,𝑞
𝑟 = 𝐹𝑝 ker(d : 𝐶𝑝+𝑞 → 𝐶𝑝+𝑞+1) and 𝐵𝑝,𝑞𝑟 = 𝐹𝑝 im(d : 𝐶𝑝+𝑞 → 𝐶𝑝+𝑞+1). ■

Remark 2.79. Although Lemma 2.78 appears rather unwieldy, it is a very powerful tool. It

turns out that often sufficient information can be extracted without going through the grueling

process of unravelling the details of the construction in Lemma 2.78. ♣
Example 2.80. A double complex is a Z2

–graded vector space 𝐶 together with two differentials

d of bidegree (1, 0) and 𝛿 of bidegree (0, 1) such that d𝛿 + 𝛿d = 0. The associated total complex
is the graded complex

Tot𝐶𝑘 B
⊕
𝑝+𝑞=𝑘

𝐶𝑝,𝑞

equipped with the differential d + 𝛿 . Tot𝐶 has two filtrations

′𝐹𝑝 Tot𝐶𝑛 B
⊕
𝑛=𝑝′+𝑞
𝑝′⩾𝑝

𝐶𝑝,𝑞

′′𝐹𝑞 Tot𝐶𝑛 B
⊕
𝑛=𝑝+𝑞′
𝑞′⩾𝑞

𝐶𝑝,𝑞 .

Consequently, (Tot𝐶, d) has two spectral sequences. The 𝐸2 pages of these spectral sequences

are

′𝐸
𝑝,𝑞

2
� H

𝑝 (H𝑞 (𝐶, 𝛿), d) and
′′𝐸

𝑝,𝑞

2
� H

𝑞 (H𝑝 (𝐶, d), 𝛿) . ♠
Example 2.81. It is an frivolous but enlightening exercise to derive the snake lemma from

considerations of the spectral sequences of the obvious double complex inherent in its setting.

The setting of the snake lemma can be understood as a double complex:

𝐵0 𝐵1 𝐵2

𝐴0 𝐴1 𝐴2

𝑓0 𝑓1 𝑓2
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Since the rows are exact,
′′𝐸1 = 0. On the other hand,

′𝐸1 is

coker 𝑓0 coker 𝑓1 coker 𝑓2

ker 𝑓0 ker 𝑓1 ker 𝑓2.

The
′𝐸2 page is the cohomology of

′𝐸1. For degree reasons, every differential except possibly d
0,1
2

vanishes. As a consequence,
′𝐸
𝑝,𝑞

2
= 0 unless (𝑝, 𝑞) ∈ {(0, 1), (2, 0)} and d

0,1
2

is an isomorphism.

This yields exact sequences

ker(coker 𝑓0 → coker 𝑓1) ↩→ coker 𝑓1 ↠ coker 𝑓2

and

ker 𝑓0 ↩→ ker 𝑓1 ↠ coker(ker 𝑓1 → ker 𝑓2) .

and an isomorphism coker(ker 𝑓1 → ker 𝑓2) � ker(coker 𝑓0 → coker 𝑓1). Splicing these short

exact sequences gives the familiar long exact sequence.

ker 𝑓0 ↩→ ker 𝑓1 ↠ ker 𝑓2 → coker 𝑓0 → coker 𝑓1 ↠ coker 𝑓2. ♠

Lemma 2.82 (Spectral sequence of a filtered differential Z–graded algebra). Let (𝐴, d) be a
differential Z–graded algebra equipped with a descending filtration 𝐹 •𝐴•. There is a product
· = ·𝑟 : 𝐸

𝑝,𝑞
𝑟 ⊗ 𝐸𝑝

′,𝑞′
𝑟 → 𝐸

𝑝+𝑝′,𝑞+𝑞′
𝑟 such that [𝑥] [𝑦] = [𝑥𝑦], d𝑟 is derivation, and the isomorphism

H(𝐸𝑟 ) � 𝐸𝑟+1 preserves the product.
If 𝐹 •𝐴 is bounded, then 𝐸∞ � Gr

𝑝
H(𝐴, d) is compatible with the product.

Proof. By direct inspection,

𝑍
𝑝,𝑞
𝑟 · 𝑍𝑝

′,𝑞′
𝑟 ⊂ 𝑍𝑝+𝑝

′,𝑞+𝑞′
𝑟 and 𝑍

𝑝,𝑞
𝑟 · (𝐵𝑝

′,𝑞′
𝑟 + 𝑍𝑝

′+1,𝑞′−1

𝑟−1
) ⊂ 𝐵

𝑝+𝑝′,𝑞+𝑞′
𝑟 + 𝑍𝑝+𝑝

′+1,𝑞+𝑞′−1

𝑟−1
.

This proves that ·𝑟 is defined. That d𝑟 is a derivation and the rest are either obvious or an

exercise. ■

2.9 The Leray–Serre spectral sequence

The following discusses the Leray–Spectral sequence in de Rham cohomology.

Definition 2.83. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Define the horizontal filtration 𝐹Ω(𝑋 ) by

𝐹 ℓΩ𝑘 (𝑋 ) B {𝛼 ∈ Ω•(𝑋 ) : 𝑖𝑣1
. . . 𝑖𝑣𝑘+1−ℓ𝛼 = 0 for every 𝑣1, . . . , 𝑣𝑘+1−ℓ ∈ 𝑉𝑝 }

= Γ(𝑋, 𝐹 ℓΛ𝑘𝑇 ∗𝑋 )

with

𝐹 ℓΛ𝑘𝑇 ∗𝑋 B Λℓ𝑝∗𝑇 ∗𝐵 ⊗ Λ𝑘−ℓ𝑇 ∗𝑋 .

(There 𝑝∗𝑇 ∗𝐵 ⊂ 𝑇 ∗𝑋 is the annihilator of𝑉𝑝 .) The Leray–Serre spectral sequence is the spectral
sequence associated with this filtration. •
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Remark 2.84. 𝐹𝑘Ω𝑘 (𝑋 ) = Ω𝑘
hor

(𝑋 ); this is the penultimate step of the filtration. ♣
The 𝐸2 page of the Leray–Serre spectral sequence can be described as follows.

Proposition 2.85. Let 𝑝 : 𝑋 → 𝐵 be a proper fibre bundle. There is a unique graded local system
(H•

dR
(𝑝),∇) over 𝐵 such that:

(1) The fibre over 𝑏 ∈ 𝐵 is H
𝑘
dR
(𝑝−1(𝑏)).

(2) If𝑈 ⊂ 𝐵 is open, [𝛼] ∈ HdR(𝑝−1(𝑈 )), then 𝑠 [𝛼 ] ∈ Γ(𝑈 ,H𝑘
dR
(𝑝)) defined by

𝑠 [𝛼 ] (𝑏) B 𝑖∗
𝑏
[𝛼]

is parallel.

Definition 2.86. (H•
dR
(𝑝),∇) is the Gauß–Manin local system. •

Proof of Proposition 2.85. If𝑈 is as in Definition 2.1, then (2) defines a bijection

𝜏𝑈 : 𝑈 × H
𝑘
dR
(𝑝−1(𝑈 )) →

⋃
𝑏∈𝑈

H
𝑘
dR
(𝑝−1(𝑏)) .

It suffices to prove that if 𝑉 is as in Definition 2.1, then the map

𝑈 ∩𝑉 → Hom(H𝑘
dR
(𝑝−1(𝑉 )),H𝑘

dR
(𝑝−1(𝑈 )))

defined by 𝑏 ↦→ pr
2
◦ 𝜏−1

𝑈
◦ 𝜏𝑉 (𝑏, ·) is locally constant. This is an immediate consequence of the

homotopy-invariance of de Rham cohomology. ■

Proposition 2.87. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. The Leray–Serre spectral sequence associated
with 𝑝 satisfies

𝐸
𝑝,𝑞

2
� H

𝑝

dR
(𝐵,H𝑞

dR
(𝑝)).

Proof. This is an exercise in tracing through the definitions; see [GH94, p. 464] for hints. ■

Corollary 2.88. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. If 𝐵 is simply-connected, then

𝐸
𝑝,𝑞

2
� H

𝑝

dR
(𝐵) ⊗ H

𝑞

dR
(𝑝−1(𝑏)). ■

If 𝐵 is not simply-connected, thenH
𝑞

dR
(𝑝) might have monodromy.

Example 2.89. Let 𝐹 be smooth manifold. Let 𝑓 ∈ Diff (𝐹 ). Denote 𝑋𝑓 the mapping torus of 𝑓 ;
that is:

𝑋𝑓 ≔ ( [0, 1] × 𝐹 )/∼

with denoting the equivalence relation generated by (0, 𝑥) ∼ (1, 𝑓 (𝑥)). 𝑋𝑓 is a smooth manifold

and the projectionmap 𝑝 : 𝑋 → 𝑆1 = R/Z is a fibre bundle. Themonodromy of the Gauß–Manin

connection onH•
dR
(𝑝) is precisely the action of Z on H

•
dR
(𝑋 ) generated by 𝑓 ∗. ♠

The Leray–Serre spectral sequence does not usually degenerate at 𝐸2. This can be seen, e.g.,

for the Hopf bundle 𝑆2𝑛+1 → C𝑃𝑛 . However, there are two notable exceptions.
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Proposition 2.90. If 𝑝 : 𝑋 → 𝐵 is a proper smooth covering map, then

H
•
dR
(𝑋 ) � H

•
dR
(𝐵, 𝑝∗R).

Here 𝑝∗R is the (sheaf-theoretic) push-forward of the local system R on 𝑋 . ■

Theorem 2.91 (Deligne [ref?]). If 𝑋, 𝐵 are closed Kähler, then Leray–Serre spectral sequence
degenerates at 𝐸2. ■

2.10 Fibre integration

Definition 2.92. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle of relative dimension 𝑑 . A fibre orientation on

𝑝 is a an orientation on the line bundle det(𝑉𝑝) ≔ Λ𝑑𝑉𝑝 → 𝑋 . •
Proposition 2.93. Let 𝑑 ∈ N0. Let 𝑝 : 𝑋 → 𝐵 be a proper fibre bundle of relative dimension 𝑑
together with a fibre orientation.

(1) There is a unique linear map 𝑝∗ : Ω•(𝑋 ) → Ω•−𝑑 (𝐵) such that for every 𝛼 ∈ Ω𝑑+𝑘 (𝑋 ),
𝑏 ∈ 𝐵, and 𝑣1, . . . , 𝑣𝑘 ∈ Γ(𝑇𝑋 |𝑝−1 (𝑏 ) ) lifts of 𝑣1, . . . , 𝑣𝑘 ∈ 𝑇𝑏𝐵

(2.94) (𝑝∗𝛼) (𝑣1, . . . , 𝑣𝑘 ) =
ˆ
𝑝−1 (𝑏 )

𝑖 𝑣̃𝑘 · · · 𝑖 𝑣̃1
𝛼 |𝑝−1 (𝑏 ) .

(2) For every 𝛼 ∈ Ω•(𝑋 ) and 𝛽 ∈ Ω•(𝐵)
𝑝∗(𝛼 ∧ 𝑝∗𝛽) = 𝑝∗𝛼 ∧ 𝛽.

(3) Suppose that 𝐵 is oriented. For every 𝛼 ∈ Ω•(𝑋 )ˆ
𝑋

𝛼 =

ˆ
𝐵

𝑝∗𝛼

(4) Suppose that 𝜕𝐵 = ∅. Set 𝜕𝑝 ≔ 𝑝 |𝜕𝑋 : 𝜕𝑋 → 𝐵. For every 𝛼 ∈ Ω•(𝑋 )
𝑝∗d𝛼 − (−1)𝑑d𝑝∗𝛼 = 𝜕𝑝∗𝛼.

Proof. The right-hand side of (2.94) is independent of the lifts 𝑣1, . . . , 𝑣𝑘 . To verify that (2.94)

does define the map 𝑝∗ it suffices to it suffices the require smoothness. It is enough to verify

this for pr𝐵 : 𝐵 × 𝐹 → 𝐵. This proves (1).

(2) is evident from the construction. (3) follows from Fubini’s theorem.

(4) is a consequence of Stokes’ theorem; indeed: for every 𝛼 ∈ Ω𝑘+𝑑 (𝑋 ) and 𝛽 ∈ Ω•(𝐵)ˆ
𝐵

(𝑝∗d𝛼) ∧ 𝛽 =

ˆ
𝐵

𝑝∗(d𝛼 ∧ 𝑝∗𝛽)

=

ˆ
𝑋

d𝛼 ∧ 𝑝∗𝛽

=

ˆ
𝜕𝑋

𝛼 ∧ (𝜕𝑝)∗𝛽 + (−1)𝑘+𝑑
ˆ
𝑋

𝛼 ∧ 𝑝∗d𝛽

=

ˆ
𝐵

(𝜕𝑝)∗𝛼 ∧ 𝑝∗𝛽 + (−1)𝑘+𝑑 (𝑝∗𝛼) ∧ d𝛽

=

ˆ
𝐵

(𝜕𝑝)∗𝛼 ∧ 𝑝∗𝛽 + (−1)𝑑d(𝑝∗𝛼) ∧ d𝛽. ■
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Definition 2.95. In the situation of Proposition 2.93, the map 𝑝∗ is the fibre integration. •

If 𝜕𝑋 = 𝜕𝐵 = ∅, then 𝑝∗ descends to de Rham cohomology 𝑝∗ : H
•
dR
(𝑋 ) → H

•−𝑑
dR

(𝐵). Set
𝐾• ≔ ker𝑝∗ : Ω•(𝑋 ) → Ω•−𝑑 (𝐵). The short exact sequence

0 → 𝐾• → Ω•(𝑋 ) → Ω•−𝑑 (𝐵) → 0

induces a long exact sequence

· · · → H
𝑘 (𝐾•) → H

𝑘
dR
(𝑋 ) → H

𝑘−𝑑
dR

(𝐵) 𝛿−→ H
𝑘+1(𝐾•) · · · .

Whether this is useful or not depends on whether one can compute H
𝑘 (𝐾•). It might help to

observe that 𝑝∗Ω(𝐵) ⊂ 𝐾 .

2.11 The Gysin sequence

Definition 2.96. Let 𝑝 : 𝑋 → 𝐵 be a proper fibre bundle of relative dimension 𝑑 > 0. A relative
volume form on 𝑝 is a nowhere-vanishing section vol𝑋/𝐵 ∈ Γ(𝑋,Λ𝑑𝑉 ∗

𝑝 ). A relative probability
form is a relative volume form vol𝑋/𝐵 with 𝑝∗vol𝑋/𝐵 = 1 ∈ 𝐶∞(𝐵). •

Given a relative probability form vol𝑋/𝐵 , is there an 𝜂 ∈ Ω𝑑 (𝑥) satisfying

(1) 𝜂 |𝑝−1 (𝑏 ) = vol𝑋/𝐵 |𝑝−1 (𝑏 ) for every 𝑏 ∈ 𝐵, and

(2) d𝜂 = 0?

Certainly, it possible to choose 𝜂 satisfying the first condition and this defines an element

[𝜂] ∈ 𝐸0,𝑑
1
. In fact, this depends only on vol𝑋/𝐵 . Whether the second condition can be satisfied

is asking if 𝜂 can be chosen so that [𝜂] lifts to 𝐸0,𝑑
∞ . [𝜂] lifts to 𝐸0,𝑘

2
if and only if [vol𝑋/𝐵] ∈

H
0(𝐵,H𝑘

dR
(𝑝)) if and only if 𝑝∗vol𝑋/𝐵 is locally constant. There Leray–Serre spectral sequence

gives a sequence of obstructions. The Hopf bundle 𝑝 : 𝑆3 → 𝑆2
shows that these obstructions

can be non-trivial.

If the fibres of 𝑝 are rational homology spheres, i.e., HdR(𝑝−1(𝑏)) � HdR(𝑆𝑑 ), then the above

obstructions can be understood more concretely.

Definition 2.97. A rational homology sphere bundle of relative dimension 𝑑 is a proper fibre

bundle 𝑝 : 𝑋 → 𝐵 such that, for every 𝑏 ∈ 𝐵, HdR(𝑝−1(𝑏)) � HdR(𝑆𝑑 ). •
Henceforth, assume the above.

The 𝐸2 page (� 𝐸𝑑+1 page) of the Leray–Serre spectral sequence is H
•
dR
(𝐵) ⊗H

•
dR
(𝑆𝑑 ); indeed,

the choice of a relative probability form trivialisesH𝑑
dR
(𝑝) andH0

dR
(𝑝) is always trivial.

Definition 2.98. Consider a rational homology sphere bundle of relative dimension 𝑘 , 𝑝 : 𝑋 → 𝐵,

together with a relative probability form vol𝑋/𝐵 . Consider the Lerray–Serre spectral sequence

of 𝑝 . Evidently, By degree considerations, [vol𝑋/𝐵] induces an [𝜂] ∈ 𝐸0,𝑑

𝑑+1
. The Euler class of 𝑝

is

𝑒 (𝑝) B d𝑑+1 [𝜂] ∈ 𝐸𝑑+1,0

𝑑+1
� H

𝑑+1

dR
(𝐵) .

This is independent of the choice of vol𝑋/𝐵 , but depends on the orientation. •
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Example 2.99. Suppose 𝑝 : 𝑋 → 𝐵 is a fibre bundle with 𝑆1
fibres. Choose a relative probability

form vol𝑋/𝐵 . Let 𝐴 ∈ A(𝑝) be an Ehresmann connection. 𝐴 induces a unique lift 𝜂 ∈ Ω0,1

𝐴
(𝑋 )

of vol𝑋/𝐵 . It satisfies
d𝜂 = d

1,0

𝐴
𝜂 + d

2,−1

𝐴
𝜂.

If 𝐴 is volume-preserving, that is, d
1,0

𝐴
vol𝑋/𝐵 = 0, then

𝑒 (𝑝) = d
2,−1

𝐴
vol𝑋/𝐵 = 𝑖𝐹𝐴vol𝑋/𝐵 .

Note that d
2,−1

𝐴
vol𝑋/𝐵 is horizontal and

d
0,1

𝐴
d

2,−1

𝐴
vol𝑋/𝐵 = d

2,−1

𝐴
d

0,1

𝐴
vol𝑋/𝐵 = 0.

Therefore, d
2,−1

𝐴
vol𝑋/𝐵 is the pullback of a form on 𝐵 (as expected.) This also shows that the flat

connection on 𝑆𝑇Σ → Σ discussed earlier is cannot be volume-preserving. ♠
Example 2.100. Let 𝑉 → 𝐵 be an Euclidean vector bundle of rank 𝑑 + 1 = 2𝑘 + 1. Denote by

𝑆 ⊂ 𝑉 the sphere bundle and by 𝑝 : 𝑆 → 𝐵 the unit-sphere bundle. Consider the anti-podal map

𝑎 : 𝑝 → 𝑝 . Pulling-back by 𝑎 flips is compatible with the filtration and therefore descends to a

automorphism on the Leray–Serre spectral sequence. It flips sign of vol𝑆/𝐵 and consequently,

𝑎∗d𝑑+1 [𝜂] = d𝑑+1 [𝑎∗𝜂] = −d𝑘+1 [𝜂]. However, 𝑎∗ acts trivially on 𝐸
0,𝑘

𝑘+1
. ♠

Theorem 2.101 (The Gysin sequence). The Gysin sequence

· · · → H
•
dR
(𝐵)

𝑝∗

−−→ H
•
dR
(𝑋 )

𝑝∗−→ H
•−𝑑
dR

(𝐵)
𝑒 (𝑝 )∧·.
−−−−−→ H

•+1

dR
(𝐵) · · ·

is exact.

Proof of Theorem 2.101. By direct inspection, the sequence

𝐸𝑘,𝑑∞ ↩→ 𝐸
𝑘,𝑑

𝑑+1

d𝑑+1−−−→ 𝐸
𝑘+𝑑+1,0

𝑑+1
↠ 𝐸𝑛+𝑘+1,0

∞

is exact. The map

H
𝑘
dR
(𝐵) � 𝐸𝑘,𝑑

𝑑+1

d𝑑+1−−−→ 𝐸
𝑘+𝑑+1,0

𝑑+1
� H

𝑛+𝑘+1

dR
(𝐵)

is [· ∧ e(𝑝)]. Further inspection shows that the sequence

𝐸𝑘+𝑑,0∞ ↩→ H
𝑘+𝑑
dR

(𝑋 ) ↠ 𝐸𝑘,𝑑∞

is exact; indeed, this is simply the convergence statement for the Leray–Serre spectral sequence.

These combine into the Gysin sequence. ■

2.12 Symplectic fibre bundles

Definition 2.102. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle of relative dimension 2𝑘 . A relative symplectic
structure is an𝜔 ∈ Γ(𝑋,Λ2𝑉 ∗

𝑝 ) such that𝜔𝑘 is a relative volume form and d
𝑉𝜔 = 0 ∈ Γ(𝑋,Λ3𝑉𝑝).

A symplectic fibre bundle is a fibre bundle 𝑝 : 𝑋 → 𝐵 together with a relative symplectic form

𝜔 such that d∇ [𝜔] = 0 ∈ Ω1(𝐵,H2

dR
(𝑝)). •
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Remark 2.103. This is not the usual definition of symplectic fibre bundle [MS98, §6.1] and it is a

good exercise to prove that the two version of this concept are, in fact, equivalent. ♣
A relative straight-forward application shows that the above notion agrees with the usual

notion in the symplectic literature.

The assumption we made says that [𝜔] lifts to 𝐸0,2
2
. Again, it is interesting to ask whether it

possible to lift to 𝐸
0,2
∞ or, equivalently, to find Ω ∈ Ω2(𝑋 ) with

(1) Ω |𝑝−1 (𝑏 ) = 𝜔 |𝑝−1 (𝑏 ) and

(2) dΩ = 0.

Additionally, one might want to require that Ω itself is symplectic.

If an Ω satisfying the first condition (but possibly not the second) exists it defines a connec-

tion 𝐴 = 𝐴Ω by the declaring

𝐻𝐴 B ker(𝑖 ·Ω : 𝑇𝑋 → 𝑉 ∗
𝑝 ) .

By construction Ω = Ω0,2 + Ω2,0
. We have dΩ0,2 = d

1,0

𝐴
Ω0,2 + d

2,−1

𝐴
Ω0,2

. Observe that d
1,0

𝐴
Ω0,2 = 0

if and only if dΩ ∈ 𝐹 2Ω3(𝑋 ). This means that 𝐴 is a symplectic connection. The term d
2,−1

𝐴
Ω0,2

vanishes if and only if 𝐴 is flat. In general, whether the error d
2,−1

𝐴
Ω0,2

can be corrected is a

question about the curvature 𝐹𝐴 inducing Hamiltonian or just symplectic vector field on the

fibres. Whether the further terms can be corrected (iteratively) is controlled by the Leray–Serre

spectral sequence.

Example 2.104. Consider the fibre bundle 𝑝 : C𝑃3 → H𝑃1 � 𝑆4
. C𝑃3

has a symplectic form, the

Fubini–Study form 𝜔FS. The restriction to 𝜔FS to the fibres of 𝑝 is symplectic. But note that 𝑆4

does not carry a symplectic form. ♠
Example 2.105. Consider the Hopf surface 𝐻 B 𝑆3 × 𝑆1 = (C2\{0})/Z with 𝑘 ∈ Z acting by 2

𝑘
.

𝐻 does not admits a symplectic structure, but the fibre bundle 𝑝 : 𝐻 → C𝑃1
admits a relative

symplectic structure with fibres diffeomorphic to 𝑇 2
. ♠

3 Lie groups

In this section I will introduce (review?) the concept of a Lie group, that is, a group in the

category of manifolds. For the purpose of this course Lie groups will be a tool and a source of

examples of manifolds. The theory of Lie groups is a vast subject and we will not even scrape

the surface. A good reference is Bump [Bum13].

3.1 Definition

Definition 3.1. A Lie group is a smooth manifold 𝐺 together with a group structure on 𝐺 such

that the maps𝑚 : 𝐺 ×𝐺 → 𝐺 defined by𝑚(𝑔, ℎ) ≔ 𝑔 · ℎ, and 𝑖 : 𝐺 → 𝐺 defined by 𝑖 (𝑔) ≔ 𝑔−1

are smooth. Let 𝐺 and 𝐻 be Lie groups. A Lie group homomorphism from 𝐺 to 𝐻 is a smooth

group homomorphism 𝜌 : 𝐺 → 𝐻 . •
Example 3.2. 𝑆1 = R/Z, GL𝑛 (R), GL𝑛 (C), O(𝑛), U(𝑛), SO(𝑛), SU(𝑛) are Lie groups. ♠

43



Example 3.3. Let 𝑉 be a vector space. If 𝜔 ∈ Λ2𝑉 ∗
is a non-degenerate 2–form on 𝑉 , then

𝐻 = 𝐻 (𝑉 ,𝜔), the Heisenberg group of (𝑉 ,𝜔), is defined by 𝐻 ≔ U(1) × 𝑉 with the group

operation

(𝑒𝑖𝛼 , 𝑣) · (𝑒𝑖𝛽 ,𝑤) ≔ (𝑒𝑖𝛼+𝑖𝛽+2𝜋𝑖𝜔 (𝑣,𝑤 ) , 𝑣 +𝑤) .
𝐻 is a Lie group. ♠
Theorem 3.4 (reference?). Let 𝐺 be a Lie group. Let 𝐻 < 𝐺 be a subgroup. If 𝐻 is closed, then it
is a submanifold; hence: 𝐻 is a Lie group.

Theorem 3.5 (Yamabe [Yam50]; see also Goto [Got69]). Let 𝐺 be a Lie group. Let 𝐻 < 𝐺 be a
subgroup. If 𝐻 is path-connected, then 𝐻 is an immersed submanifold; hence: 𝐻 is a Lie group.

3.2 Lie group actions

Definition 3.6. Let 𝑋 be a smooth manifold. Let 𝐺 be a Lie group.

(1) A (left) action of 𝐺 on 𝑋 is a smooth map 𝐿 : 𝐺 × 𝑋 → 𝑋 satisfying

𝐿(1, ·) = id𝑋 and 𝐿(𝑔, 𝐿(ℎ, ·) = 𝐿(𝑔ℎ, ·).

Define 𝐿𝑔 ∈ Diff (𝑋 ) by 𝐿𝑔 ≔ 𝐿(𝑔, ·) and abbreviate 𝑔 · 𝑥 = 𝐿(𝑔, 𝑥).

(2) The orbit of 𝑥 ∈ 𝑋 is

Orb𝐺 (𝑥) = 𝐺 · 𝑥 ≔ {𝑔 · 𝑥 : 𝑔 ∈ 𝐺}.

(3) The stabiliser of 𝑥 ∈ 𝑋 is

Stab𝐺 (𝑥) = 𝐺𝑥 ≔ {𝑔 ∈ 𝐺 : 𝑔 · 𝑥 = 𝑥}.

(4) The action of 𝐺 on 𝑋 is free if 𝐺𝑥 = 1 for every 𝑥 ∈ 𝑋 .

(5) The action of 𝐺 on 𝑋 is proper if the map (𝐿, pr𝑋 ) : 𝐺 × 𝑋 → 𝑋 × 𝑋 is proper. •

(6) A right action of 𝐺 on 𝑋 is a smooth map 𝑅 : 𝑋 ×𝐺 → 𝐺 satisfying

𝑅(·, 1) = id𝑋 and 𝑅(𝑅(·, 𝑔), ℎ) = 𝑅(·, 𝑔ℎ) .

Set 𝑅𝑔 (·) ≔ 𝑅(·, 𝑔) and abbreviate 𝑥 · 𝑔 ≔ 𝑅(𝑥,𝑔). If 𝑅 is a right action, then 𝐿(𝑔, 𝑥) ≔
𝑅(𝑥, 𝑔−1) defines a left action. The notions orbit, stabiliser, free, proper carry over to right
actions in the obvious way.

In this section, actions are assumed to be left actions unless explicitly stated otherwise.

Example 3.7. If𝐺 is a Lie group, then𝐺 acts on itself on the left by left multiplication 𝐿 : 𝐺×𝐺 →
𝐺 ,

𝐿(𝑔, ℎ) ≔ 𝑔 · ℎ.
The same formula also defines the action of 𝐺 on itself on the right by right multiplication

𝑅 : 𝐺 ×𝐺 ,
𝑅(ℎ,𝑔) = ℎ · 𝑔.

These actions commute and 𝐺 acts on itself on the left by conjugation 𝐶 : 𝐺 → 𝐺 → 𝐺 ,

𝐶 (𝑔, ℎ) ≔ 𝑔ℎ𝑔−1. ♠
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Exercise 3.8. Let 𝐺 be a Lie group. Let 𝐻 < 𝐺 be a closed subgroup. Prove that the action of 𝐻

on 𝐺 is free and proper.

Example 3.9. U(1) acts on 𝑆2𝑛+1
via 𝑒𝑖𝛼 · 𝑧 = 𝑒𝑖𝛼𝑧. ♠

Example 3.10. Let 𝜃 ∈ R. R acts on 𝑇 2 = R2/Z2
via 𝐿(𝑡, [𝑥,𝑦]) ≔ [𝑥 + 𝑡, 𝑦 + 𝜃𝑡]. ♠

3.3 The slice theorem

Definition 3.11. Let 𝑋 be a manifold. Let 𝐺 be a Lie group acting on 𝑋 . A categorical quotient
quotient of 𝑋 by 𝐺 is a smooth manifold 𝑋/𝐺 together with a smooth 𝐺–invariant map

𝑝 : 𝑋 → 𝑋/𝐺 such that every 𝐺–invariant map 𝑓 : 𝑋 → 𝑌 uniquely factors though 𝑝 . •

𝑋 𝑌

𝑋/𝐺.

𝑝

𝑓

𝐶∞(𝑋/𝐺, ·) � 𝐶∞(𝑋, ·)𝐺

Which actions admit quotients?

Proposition 3.12. Let 𝑋 be a manifold. Let 𝐺 be a Lie group. If 𝐺 acts freely and properly on 𝑡ℎ𝑒𝑛,
X it admits a categorical quotient 𝑝 : 𝑋 → 𝑋/𝐺 ; moreover: 𝑝 is a surjective submersion.

Remark 3.13. The significance of the existence of the 𝑠 is that smoothness of a continuous map

𝑌 → 𝑋/𝐺 can, therefore, be characterised by the existence of local lifts to 𝑋 . ♣

Proof assuming that 𝐺 is compact. Denote by𝑋/𝐺 the topological quotient space and by𝑝 : 𝑋 →
𝑋/𝐺 the projection map. 𝑋/𝐺 is paracompact and Hausdorff, and 𝑝 is open. (Exercise!)

Let 𝑥 ∈ 𝑋 . The map 𝐺 → 𝑋,𝑔 ↦→ 𝑔𝑥 is a proper injective immersion. Therefore, the orbit

𝐺 · 𝑥 ⊂ 𝑋 is a submanifold. Choose a 𝐺–invariant metric 𝑔 on 𝑋 . (This is a red herring. The

proof requires no Riemannian geometry, but it psychologically helpful.) Identify

𝑁𝑥 (𝐺 · 𝑥) � 𝑇𝑥 (𝐺 · 𝑥)⊥ ⊂ 𝑇𝑥𝑋

For 𝜀 > 0 set 𝑉𝑥 ≔ 𝐵𝜀 (0) ⊂ 𝑁𝑥 (𝐺 · 𝑥) and define 𝚥𝑥 : 𝐺 ×𝑉𝑥 → 𝑋 by

𝚥𝑥 (𝑔, 𝑣) ≔ 𝑔 exp𝑥 (𝑣).

Provided 𝜀 ≪ 1, 𝚥 is a 𝐺–equivariant embedding. Set 𝑆𝑥 ≔ 𝚥𝑥 ({1} ×𝑉𝑥 ) and𝑈𝑥 ≔ 𝑝 ( ˜𝑈𝑥 ). The
map 𝑝 |𝑆𝑥 : 𝑆𝑥 → 𝑈𝑥 is a homeomorphism. Define 𝜙𝑥 : 𝑈𝑥 → 𝑉𝑥 by

𝜙𝑥 ≔ pr𝑉𝑥
◦ 𝚥−1

𝑥 ◦
(
𝑝 |𝑆𝑥

)−1

.

The task at hand is to prove that the maps 𝜙𝑥 form a smooth atlas. Let 𝑥,𝑦 ∈ 𝑋 . 𝑈𝑥 ∩𝑈𝑦 ≠ ∅
if and only if (𝐺 · 𝑆𝑥 ) ∩ 𝑆𝑦 ≠ ∅. By construction, (𝑔 · 𝑆𝑥 ) ∩ 𝑆𝑥 = ∅ unless 𝑔 = 1. Therefore,

there is a unique map 𝛾
𝑦
𝑥 : (𝐺 · 𝑆𝑥 ) ∩ 𝑆𝑦 → 𝐺 satisfying 𝛾

𝑦
𝑥 (𝑧) · 𝑧 ∈ 𝑆𝑥 or, equivalently,
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pr𝐺 ◦ 𝚥−1

𝑦 (𝛾𝑦𝑥 (𝑧) · 𝑧) = 1. By the implicit function theorem, 𝛾
𝑦
𝑥 is smooth. A moment’s thought

shows that the transition map 𝜙𝑥 ◦ 𝜙−1

𝑦 satisfies

𝜙𝑥 ◦ 𝜙−1

𝑦 (𝑧) = pr𝑉𝑥
◦ 𝚥𝑥

(
𝛾
𝑦
𝑥 ( 𝚥−1

𝑦 (1, 𝑧)) · 𝚥−1

𝑦 (1, 𝑧)
)
.

Therefore, it is smooth. This finishes the construction of the smooth atlas on 𝑋/𝐺 .
The universal property is evident from the construction. ■

Remark 3.14. For non-compact𝐺 one first proves that𝐺 · 𝑥 is a submanifold and then produces

an 𝑆𝑥 in some (quite arbitrary way). ♣
Definition 3.15. A homogeneous space is a smooth manifold 𝑋 together with a transitive 𝐺

action. •
Proposition 3.16. If 𝑋 is a homogeneous space, then the map𝐺/𝐺𝑥0

→ 𝑋 induced by 𝑔 ↦→ 𝑔 · 𝑥0 is
a diffeomorphism. ■

Example 3.17. C𝑃𝑛 � 𝑆2𝑛+1/U(1). ♠
Example 3.18. Gr𝑟 (R𝑛) � 𝑂 (𝑛)/(O(𝑟 ) × O(𝑛 − 𝑟 )). ♠

3.4 Lie algebra

Proposition 3.19. Let 𝐺 be a Lie group. Denote by

Lie(𝐺) ≔ Vect(𝐺)𝐿 ≔ {𝜉 ∈ Vect(𝐺) : 𝐿∗𝑔𝜉 = 𝜉 for every 𝑔 ∈ 𝐺}.

the space of left-invariant vector fields on 𝐺 .

(1) Lie(𝐺) ⊂ Vect(𝐺) is a Lie subalgebra.

(2) For 𝑔 ∈ 𝐺 and 𝜉 ∈ Lie(𝐺), 𝑅∗𝑔𝜉 ∈ Lie(𝐺).

Proof. (1) is obvious. (2) holds because 𝑅𝑔 and 𝐿𝑔 commute. ■

Definition 3.20. Let 𝐺 be a Lie group. The Lie algebra of 𝐺 is the Lie algebra of left-invariant

vector fields:

𝔤 = Lie(𝐺) ≔ Vect(𝐺)𝐿 .

The adjoint representation Ad : 𝐺 → End(Lie(𝐺)) is defined by

Ad(𝑔)𝜉 ≔ 𝑅∗𝑔𝜉 .

The adjoint representation ad : Lie(𝐺) → End(Lie(𝐺)) is defined by

ad(𝜉)𝜂 ≔ [𝜉, 𝜂] .

•
Proposition 3.21. Let 𝐺 be a Lie group.

(1) The evaluation map ev1 : Vect(𝐺)𝐿 → 𝑇1𝐺 is an isomorphism.
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(2) For 𝑔 ∈ 𝐺 and 𝜉 ∈ Vect(𝐺)𝐿

Ad(𝑔)𝜉 = ev
−1

1 ◦𝑇1𝐶𝑔 ◦ ev1(𝜉) .

(3) For 𝜉, 𝜂 ∈ Vect(𝐺)𝐿
𝑇1 Ad(ev1(𝜉))𝜂 = [𝜉, 𝜂] .

(4) If 𝜌 : 𝐺 → 𝐻 is a Lie group homomorphism, then Lie(𝜌) : Lie(𝐺) → Lie(𝐻 ) defined by

Lie(𝜌) = ev
−1

1 ◦𝑇1𝜌 ◦ ev1

is a Lie algebra homomorphism.

Proof. A left-invariant vector field 𝑣 satisfies

𝑣𝑔 = 𝑇1𝐿𝑔 (𝑣1) .

Therefore, it is determined by 𝑣1. Conversely, the above formula defines a left-invariant vector

field. This proves (1).

To prove (2), compute

ev1(𝑅∗𝑔𝜉) = 𝑇𝑔𝑅𝑔−1 (𝜉𝑔)
= 𝑇𝑔𝑅𝑔−1𝑇1𝐿𝑔 (𝜉1)
= 𝑇1𝐶𝑔 (𝜉1) .

To prove (3), observe that

flow
𝑡
𝜉
(𝑔) = flow

𝑡
𝜉
(𝐿𝑔 (1))

= 𝐿𝑔 (flow
𝑡
𝜉
(1))

= 𝑅
flow

𝑡
𝜉
(1)𝑔.

Therefore,

𝑇1 Ad(ev1(𝜉))𝜂 =
d

d𝑡

����
𝑡=0

𝑅∗
flow

𝑡
𝜉
(1) (𝜂)

=
d

d𝑡

����
𝑡=0

(flow
𝑡
𝜉
)∗(𝜂)

= [𝜉, 𝜂] .

To prove (4), observe that by (2)

Ad(𝜌 (𝑔)) ◦ Lie(𝜌) (𝜉) = Lie(𝜌) ◦ Ad(𝑔) (𝜉) .

By (3), this implies that Lie(𝜌) is a Lie algebra homomorphism. ■

The following gadget turns out to be important for us later.
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Definition 3.22. Let𝐺 be a Lie group. TheMaurer–Cartan form 𝜇 ∈ Ω1(𝐺, Lie(𝐺)) is defined
by

𝜇𝑔 (𝜉) ≔ ev
−1

1 ◦𝑇𝑔𝐿𝑔−1 (𝜉). •

Proposition 3.23. Let 𝐺 be a Lie group.

(1) The Maurer–Cartan form 𝜇 satisfies 𝜇 (𝜉) = 𝜉 for every 𝜉 ∈ Lie(𝐺).

(2) For every 𝑔 ∈ 𝐺
𝑅∗𝑔𝜇 = Ad(𝑔−1) ◦ 𝜇.

(3) The Maurer–Cartan form 𝜇 satisfies the Maurer–Cartan equation

d𝜇 + 1

2
[𝜇 ∧ 𝜇] = 0

Proof. (1) is obvious.
To prove (2), for 𝑔 ∈ 𝐺 and 𝜉 ∈ Lie(𝐺) compute

(𝑅∗𝑔𝜇) (𝜉) = 𝜇 ((𝑅𝑔)∗𝜉) = (𝑅𝑔−1)∗𝜉 = Ad(𝑔−1)𝜉 .

To prove (3), compute(
d𝜇 + 1

2
[𝜇 ∧ 𝜇]

)
(𝜉, 𝜂) = L𝜉 (𝜇 (𝜂)) −L𝜂 (𝜇 (𝜉)) − 𝜇 ( [𝜉, 𝜂])

+ 1

2

( [𝜇 (𝜉), 𝜇 (𝜂)] − [𝜇 (𝜉), 𝜇 (𝜂)])

= 0. ■

Exercise 3.24. Let 𝜌 : 𝐺 → 𝐻 be a Lie group homomorphism. Prove that

𝜌∗𝜇𝐻 = Lie(𝜌) ◦ 𝜇𝐺 .

3.5 Exponential map

Definition 3.25. Let 𝐺 be a Lie group. The exponential map exp : Lie(𝐺) → 𝐺 is defined by

exp(𝜉) ≔ flow
1

𝜉
(1). •

Exercise 3.26. (1) Prove that exp is well-defined.

(2) Let 𝜌 : 𝐺 → 𝐻 be a Lie group homomorphism. Prove that

𝜌 ◦ exp(𝜉) = exp ◦ Lie(𝜌) (𝜉) .

(3) Prove that

𝐶𝑔 ◦ exp = exp ◦Ad𝑔 .
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Definition 3.27. Let𝑋 be smooth manifold. Let𝐺 be a Lie group. Let 𝐿 : 𝐺 ×𝑋 → 𝑋 be a smooth

left action. The infinitesimal action of Lie(𝐺) on 𝑋 is the map 𝑣 = 𝑣𝐿 : Lie(𝐺) → Vect(𝑋 )
defined by

𝑣𝜉 (𝑥) ≔
d

d𝑡

����
𝑡=0

𝐿exp(𝑡𝜉 ) (𝑥) .

•
Proposition 3.28. Let 𝑋 be smooth manifold. Let𝐺 be a Lie group. Let 𝐿 : 𝐺 ×𝑋 → 𝑋 be a smooth
left action. Denote by 𝑣 : Lie(𝐺) → Vect(𝑋 ) the corresponding infinitesimal action.

(1) For every 𝜉 ∈ Lie(𝐺)
𝐿exp(𝑡𝜉 ) = flow

𝑡
𝑣𝜉
.

(2) For every 𝑔 ∈ 𝐺 and 𝜉 ∈ Lie(𝐺)
𝑣Ad(𝑔)𝜉 = 𝐿

∗
𝑔−1
𝑣𝜉

(3) The infinitesimal action 𝑣 is an Lie algebra anti-isomorphism; that is: for every 𝜉, 𝜂 ∈ Lie(𝐺)

𝑣 [𝜉,𝜂 ] = −[𝑣𝜉 , 𝑣𝜂] .

Remark 3.29. If 𝑅 is a right action and 𝐿 is the corresponding left-action, then 𝑣𝑅 = −𝑣𝐿 . In
particular, 𝑣𝑅 is a Lie algebra homomorphism. ♣

Proof. (1) is obvious.
To prove (2), compute

𝑣Ad(𝑔)𝜉 (𝑥) =
d

d𝑡

����
𝑡=0

𝐿𝑔 exp(𝑡𝜉 )𝑔−1 (𝑥)

= 𝑇𝐿𝑔 (𝑥 )𝐿𝑔

(
d

d𝑡

����
𝑡=0

𝐿exp(𝑡𝜉 )𝐿𝑔−1 (𝑥)
)

= 𝑇𝐿𝑔 (𝑥 )𝐿𝑔
(
𝑣𝜉 (𝐿𝑔−1 (𝑥))

)
= (𝐿∗

𝑔−1
𝑣𝜉 ) (𝑥).

To prove (3), differentiate

𝑣Ad(exp(𝑡𝜉 )𝜂 = 𝐿∗
exp(−𝑡𝜉 ) 𝑣𝜂 =

(
flow

𝑡
𝑣𝜉

)∗
𝑣𝜂 . ■

3.6 Haar volume form

Proposition 3.30. Let 𝐺 be a Lie group. Set 𝑑 ≔ dim𝐺 . There is a unique left-invariant volume
form up to multiplication by a non-zero constant:

dim Ω𝑑 (𝐺)𝐿 ≔ {𝜈 ∈ Ω𝑑 (𝐺) : 𝐿∗𝑔𝜈 = 𝜈} = 1.

Definition 3.31. Let𝐺 be a Lie group. A Haar volume form on𝐺 is a left-invariant volume form

𝜈 on 𝐺 . 𝜈 is normalised if

´
𝐺
𝜈 = 1. •
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Proof of Proposition 3.30. If 𝜈 ∈ Ω𝑑 (𝐺) is left-invariant, then

𝜈𝑔 = 𝜈1 ◦ Λ𝑑𝑇𝑔𝐿𝑔−1 .

Therefore, 𝜈 is uniquely determined by 𝜈1 ∈ Λ𝑑𝑇 ∗
1𝐺 . Conversely, every 𝜈1 ∈ Λ𝑑𝑇𝐺1 determines a

left-invariant 𝜈 ∈ Ω𝑑 (𝐺). ■

Exercise 3.32. Let 𝐺 be a Lie group. Let 𝜈 be a Haar volume form on 𝐺 . For every 𝑔 ∈ 𝐺 , 𝑅∗𝑔𝜈 is
a Haar volume form. The modular function of 𝐺 is the function Δ ∈ 𝐶∞(𝐺,R×) defined by

Δ(𝑔) ≔
𝑅∗𝑔𝜈

𝜈
.

(1) Prove that Δ = 1 if and only if 𝐺 admits a right-invariant Haar measure. These groups

are unimodular.

(2) Prove that Δ : 𝐺 → R×
is a Lie group homomorphism.

(3) Prove that Δ = 1 if 𝐺 is compact.

(4) Define 𝑖 : 𝐺 → 𝐺 by 𝑖 (𝑔) ≔ 𝑔−1
. Prove that 𝑖∗𝜈 = Δ𝜈 .

(5) Consider the Lie group

𝐺 ≔

{(
𝑥 𝑦

0 1

)
: 𝑥 > 0, 𝑦 ∈ R

}
.

Compute modular function of 𝐺 .

3.7 The Killing form

Definition 3.33. Let 𝔤 be a Lie algebra. The Killing form 𝐵 ∈ 𝑆2𝔤∗ is defined by

𝐵(𝜉, 𝜂) ≔ tr(ad(𝜉) ◦ ad(𝜂)) . •

Exercise 3.34. Prove that
𝐵( [𝜉, 𝜂], 𝜁 ) = 𝐵(𝜂, [𝜉, 𝜁 ]) .

Definition 3.35. A Lie algebra is called semisimple if 𝐵 is negative definite. 𝐺 semisimple if
Lie(𝐺) is semisimple. •
Exercise 3.36. Prove that if 𝔤 = 𝔤𝔩(𝑛), then

𝐵(𝜉, 𝜂) = 2𝑛 tr(𝜉𝜂) − 2 tr(𝜉) tr(𝜂) .

Exercise 3.37. Prove that if 𝔤 = 𝔰𝔲(𝑛), then

𝐵(𝜉, 𝜂) = 2𝑛 tr(𝜉𝜂) .
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3.8 de Rham cohomology of manifolds with 𝐺–actions

Lemma 3.38. Let𝐺 be a Lie group. Let 𝑋 be a smooth manifold together with an action 𝜌 : 𝐺 ⟳ 𝑋 .
Set

Ω•(𝑋 )𝜌 ≔ {𝛼 ∈ Ω•(𝑋 ) : 𝜌∗𝑔𝛼 = 𝛼 for every 𝑔 ∈ 𝐺}.
If 𝐺 is connected and compact, then the inclusion 𝜄 : Ω•(𝑋 )𝜌 ↩→ Ω•(𝑋 ) induces an isomorphism

H
•(𝜄) : H

•(Ω•(𝑋 )𝜌 ) � H
•
dR
(𝑋 ).

Proof. The proof relies on the construction of an inverse H
•(av) of H

•(𝜄). Choose an orientation

on 𝐺 . Denote by

(pr𝑋 )∗ : Ω•(𝐺 × 𝑋 ) → Ω•−dim𝐺 (𝑋 )
the fibre integration map along pr𝑋 : 𝐺 × 𝑋 → 𝑋

(pr𝑋 )∗ ◦ pr
∗
𝐺𝛼 =

ˆ
𝐺

𝛼 and(3.39)

(pr𝑋 )∗(𝛽 ∧ pr
∗
𝑋𝛾) = (pr𝑋 )∗𝛽 ∧ 𝛾(3.40)

for every 𝛼 ∈ Ω•(𝐺), 𝛽 ∈ Ω•(𝐺 ×𝑋 ), 𝛾 ∈ Ω•(𝑋 ). For every 𝜂 ∈ Ωdim𝐺 (𝐺) with
´
𝐺
𝜂 = 1 define

av𝜂 : Ω•(𝑋 ) → Ω•(𝑋 )

by

av𝜂 B (pr𝑋 )∗ ◦ (pr
∗
𝐺𝜂 ∧ ·) ◦ 𝜌∗.

This is a cochain map because (pr𝑋 )∗, pr
∗
𝐺
𝜂 ∧ ·, and 𝜌∗ are.

For every 𝑔 ∈ 𝐺 and 𝛼 ∈ Ω•(𝑋 ),

𝜌∗𝑔 av𝜈 (𝛼) = (pr𝑋 )∗(pr
∗
𝐺𝜈 ∧ (id𝐺 × 𝜌𝑔)∗𝜌∗𝛼) = (pr𝑋 )∗(pr

∗
𝐺𝜈 ∧ (𝑅∗𝑔 × id𝑋 )∗𝜌∗𝛼) = av𝜈 (𝛼).

Therefore, im av𝜈 ⊂ Ω•(𝑋 )𝜌 . Denote by av : Ω•(𝑋 ) → Ω•(𝑋 )𝜌 the cochain map by corestrict-

ing av𝜈 .

Since 𝛼 ∈ Ω•(𝑋 )𝜌 if and only if 𝜌∗𝛼 = pr
∗
𝑋
𝛼 , and using (3.40),

av ◦ 𝜄 (𝛼) = (pr𝑋 )∗(pr
∗
𝐺𝜈 ∧ pr

∗
𝑋𝛼) = (pr𝑋 )∗pr

∗
𝐺𝜈 ∧ 𝛼 = 𝛼.

Therefore, av is a left-inverse of 𝜄. It remains to prove that H
•(𝜄 ◦ av) = H

•(av𝜈 ) = idH
•
dR
(𝑋 ) .

H
•(pr

∗
𝐺
𝜂 ∧ ·) is independent of 𝜂. A moment’s thought shows that there are a smooth

map 𝜌 : 𝐺 × 𝑋 → 𝑋 and a non-empty open subset 𝑈 ⊂ 𝐺 such that 𝜌 is homotopic to 𝜌 and

𝜌 |𝑈 ×𝑋 = pr𝑋 |𝑈 ×𝑋 . Choose 𝜂 ∈ Ωdim𝐺 (𝑋 ) with
´
𝐺
𝜂 = 1 and supp𝜂 ⊂ 𝑈 . By direct computation

H
•(av𝜈 ) = H

•((pr𝑋 )∗) ◦ H
•(pr

∗
𝐺𝜂 ∧ ·) ◦ H

•(𝜌∗)
= H

•((pr𝑋 )∗) ◦ H
•((pr

∗
𝐺𝜂 ∧ ·) ◦ 𝜌∗)

= H
•((pr𝑋 )∗) ◦ H

•((pr
∗
𝐺𝜂 ∧ ·) ◦ 𝜌∗)

= H
•((pr𝑋 )∗) ◦ H

•((pr
∗
𝐺𝜂 ∧ ·) ◦ 𝑝𝑟 ∗𝑋 )

= H
•((pr𝑋 )∗ ◦ (pr

∗
𝐺𝜈 ∧ ·) ◦ pr

∗
𝑋 )

= id.

■
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Remark 3.41. The advantage of not following the heuristic argument, is that one can (at least in

principle) write down a chain homotopy ℎ such that

𝑖 ◦ av − id = d ◦ ℎ + ℎ ◦ d. ♣

Let us now use Lemma 3.38 to compute the de Rham cohomology in a few simple cases.

Example 3.42. 𝐺 = SO(𝑛 + 1) acts transitively on 𝑆𝑛 . The stabilizer of any 𝑥 ∈ 𝑆𝑛 is SO(𝑇𝑥𝑆𝑛) �
SO(𝑛). A moments thought shows that

Ω•(𝑆𝑛)𝐺 = (Λ∗𝑇𝑥𝑆
𝑛)SO(𝑇𝑥𝑆𝑛 )

= (Λ∗(R𝑛)∗)SO(𝑛)

= R · 1 ⊕ R · d𝑥1 ∧ . . . ∧ d𝑥𝑛

= R[0] ⊕ R[𝑛] .

The differential necessarily vanishes (for dimension reasons if 𝑛 > 1); hence, this already is

H
•
dR
(𝑆𝑛). The last step in the above computation is a fact from the representation theory of

SO(𝑛). ♠
Example 3.43. 𝐺 = U(𝑛+1) acts transitively onC𝑃𝑛 with stabiliser of anyC ·𝑧 ∈ C𝑃𝑛 isomorphic

to U(𝑧⊥) = U(𝑇𝑧C𝑃𝑛) � U(𝑛). We compute

Ω•(C𝑃𝑛)𝑈 (𝑛+1) ⊗ C = (Λ∗(C𝑛)∗)U(𝑛) .

The latter is generated as a C–algebra by the standard symplectic form

𝜔 :=

𝑛∑︁
𝑖=1

𝑖d𝑧𝑖 ∧ d𝑧𝑖

2

;

that is,

(Λ∗(C𝑛)∗)U(𝑛) = C · 1 ⊕ C · 𝜔 ⊕ · · · ⊕ C · 𝜔𝑛

= C[𝜔]/(𝜔𝑛+1) .

Since this complex is supported in even degrees, the differential vanishes and this already is

𝐻 •
dR
(C𝑃𝑛) ⊗ C. ♠

Example 3.44. Let 𝐺 be a Lie group. Let 𝔤 ≔ Lie(𝐺). If we consider the 𝐿 action of 𝐺 on itself,

then

Ω•(𝐺)𝐿 = Λ∗𝔤∗ = Hom(Λ∗𝔤,R).

The differential, which is usually denoted by 𝛿 , does not vanish. It can be computed to be

(𝛿𝛼) (𝜉1, . . . , 𝑥𝑘+1) =
𝑘+1∑︁
𝑖=1

(−1)𝑖+1𝜉𝑖 · 𝛼 (𝜉1, . . . , 𝜉𝑖 , . . . , 𝜉𝑘+1)

+
𝑘+1∑︁
𝑖< 𝑗=1

(−1)𝑖+𝑗𝛼 ( [𝜉𝑖 , 𝜉 𝑗 ], 𝜉1, . . . , 𝜉𝑖 , . . . , 𝜉 𝑗 , . . . , 𝜉𝑘+1);
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in fact, since the Lie algebra acts trivially on R the first term vanishes. (Hom(Λ∗𝔤,R), 𝛿) is the
Chevalley–Eilenberg cochain complex (although it was discovered decades before Chevalley–

Eilenberg by Cartan). It is defined for every Lie algebra 𝔤. Its cohomology

H
•(𝔤) ≔ H

•(𝐶•(𝔤), 𝛿).

is the Lie algebra cohomology of 𝔤.

If 𝑉 is any representation of 𝔤, then 𝛿 as defined above makes Hom(Λ∗𝔤, 𝑀) into a cochain

complex. H
•(𝔤;𝑉 ) ≔ H

•(Hom(Λ∗𝔤,𝑉 )) is called the Lie algebra cohomology of 𝔤 with coeffi-

cients in 𝑉 . Lemma 3.38 shows that H
•
dR
(𝐺) = H

•(𝔤;R). The notion of Lie algebra cohomology

goes back to Chevalley and Eilenberg [CE48]. ♠
Remark 3.45. Let 𝜌 : 𝐺 → GL(𝑉 ) be a Lie group representation. Consider the trivial vector

bundle pr𝐺 : 𝑉 = 𝐺 ×𝑉 → 𝐺 . 𝐺 acts on 𝑉 by 𝐿 × 𝜌 . This turns 𝑉 into a 𝐺–invariant vector
bundle. The formula d∇𝑠 ≔ d𝑠 + (Lie(𝜌) ◦ 𝜇)𝑠 defines a 𝐺–invariant flat connection on 𝑉 . A

moment’s thought shows that H
•
dR
(𝐺,𝑉 ) = H

•(𝔤,𝑉 ). ♣
Example 3.46. Let 𝐺 be a connected compact Lie group. Let 𝐻 < 𝐺 be a connected closed Lie

subgroup. Set 𝔤 ≔ Lie(𝐺) and 𝔥 ≔ Lie(𝐻 ). Set 𝐶•(𝔤) ≔ Hom(Λ•𝔤,R) and define 𝛿 as above.

Denote by 𝐶•(𝔤, 𝔥) the subcomplex of those 𝛼 ∈ 𝐶•(𝔤) with

𝑖𝜉𝛼 = 0 and 𝑖𝜉𝛿𝛼 = 0 for every 𝜉 ∈ 𝔥.

The relative Lie algebra cohomology of 𝔤 ⊃ 𝔥 is

H
•(𝔤, 𝔥) ≔ H

•(𝐶•(𝔤, 𝔥), 𝛿) .

The adjoint action of the Lie algebra 𝔥 on 𝔤 descends to 𝔤/𝔥. Denote by Hom(Λ•𝔤/𝔥,R)𝔥
the corresponding invariant subspace of Hom(Λ•𝔤/𝔥,R). Hom(Λ•𝔤/𝔥,R)𝔥 can be regarded as

a subspace 𝐶•(𝔤). A moment’s thought identifies it as 𝐶•(𝔤, 𝔥). Moreover, Hom(Λ•𝔤/𝔥,R)𝔥 �
Ω•(𝐺/𝐻 )𝐻 and the differentials 𝛿 and d agree. Therefore,

H
•
dR
(𝐺/𝐻 ) � H

•(𝔤, 𝔥) . ♠

Exercise 3.47. Show that H
1(𝔤,R) = (𝔤/[𝔤, 𝔤])∗.

Example 3.48. Set ˜𝑅(𝑔, ℎ) ≔ ℎ𝑔−1
. If we consider the action 𝐿 × ˜𝑅 of 𝐺 ×𝐺 on 𝐺 , then

Ω•(𝐺)𝐿×𝑅̃ = (Λ•𝔤∗)Ad.

Here Ad denotes the coadjoint action. Suppose 𝛼 ∈ Ω𝑘 (𝐺)𝐿×𝑅̃ , that is, 𝛼 is left invariant and

right invariant. Since derivative of the map 𝑖 : 𝐺 → 𝐺,𝑔 ↦→ 𝑔−1
is

d𝑔𝑖 = −d𝐿𝑔−1 ◦ d𝑅𝑔−1,

we have

𝑖∗𝛼 = (−1)𝑘𝛼.

It follows that

d𝛼 = (−1)𝑘d𝑖∗𝛼 = (−1)𝑘𝑖∗d𝛼 = −d𝛼 ;
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hence, the differential vanishes on Ω•(𝐺)𝐿×𝑅̃ and

H
•
dR
(𝐺) = (Λ∗𝔤∗)Ad.

The formula

𝛾 (𝜉, 𝜂, 𝜁 ) ≔ 𝐵( [𝜉, 𝜂], 𝜁 )

defines an element 𝛾 ∈ (Λ3𝔤∗)Ad
. If 𝐺 is semisimple, then 𝛾 ≠ 0; hence 𝑏3(𝐺) ⩾ 1. ♠

Example 3.49. Let 𝜌 : 𝐺 → GL(𝑉 ) be a representation. Lie(𝜌) : 𝔤 → 𝔤𝔩(𝑉 ) can be regarded as

an element of 𝜃𝜌 ∈ 𝔤∗ ⊗ 𝔤𝔩(𝑉 ). Evidently, 𝜃𝜌 is invariant under the action induces by Ad and 𝜌

and so is 𝜃∧𝑘𝜌 ∈ Λ𝑘𝔤∗ ⊗ 𝔤𝔩(𝑉 ). Therefore, tr(𝜃∧𝑘𝜌 ) ∈ Λ𝑘𝔤∗. ♠
Remark 3.50. The multiplication map𝑚 : 𝐺 ×𝐺 → 𝐺 induces a map Δ : H

•(𝐺) → H
•(𝐺) ⊗

H
•(𝐺). This turns H

•(𝐺) into a Hopf algebra. ♣

4 Principal bundles

4.1 Definition and examples

Definition 4.1. Let 𝐺 be a Lie group. A 𝐺–principal fibre bundle is a smooth map 𝑝 : 𝑃 → 𝐵

together with a right action 𝑅 : 𝑃 ⟲ 𝐺 such that:

(1) 𝑝 is 𝐺–invariant; that is: for every 𝑥 ∈ 𝑃 , 𝑔 ∈ 𝐺 , 𝑝 (𝑥𝑔) = 𝑝 (𝑥); and

(2) for every 𝑏 ∈ 𝐵 there are an open subset 𝑏 ∈ 𝑈 ⊂ 𝐵, and a 𝐺–equivariant local trivial-
isation of 𝑝 |𝑝−1 (𝑈 ) ; that is: a 𝐺–equivariant diffeomorphism 𝜏 : 𝑝−1(𝑈 ) → 𝑈 ×𝐺 such

that

pr𝑈 ◦ 𝜏 = 𝑝 |𝑝−1 (𝑈 ) .

𝐺 is the structure group of (𝑝, 𝑅). •
Remark 4.2. In the situation of Definition 4.1, 𝑝 : 𝑃 → 𝐵 is a quotient 𝑃 → 𝑃/𝐺 , 𝑅 is free,

fibre-preserving, and its restriction to any fibre 𝑝−1(𝑏) is transitive. ♣
Remark 4.3. The action 𝑅 is an important part of the data and cannot be recovered from 𝑝 . ♣
Example 4.4. The trivial 𝐺–principal bundle over 𝐵 is pr𝐵 : 𝐵 × 𝐺 → 𝐵 with (𝑏,𝑔) · ℎ B
(𝑏,𝑔ℎ). ♠
Example 4.5. Every smooth principal covering map 𝑝 : 𝑋 → 𝐵 is an Aut(𝑝)op

–principal fibre

bundle. ♠
Example 4.6. Let 𝐵 be a smooth manifold. Let 𝑉 → 𝐵 be a vector bundle of rank 𝑟 . Denote by

Fr(𝑉 ) ≔ {(𝑏, 𝜙) : 𝑏 ∈ 𝐵, 𝜙 : R𝑟 → 𝑉𝑏 isomorphism}

the frame bundle of 𝑉 . Denote by 𝑝 : Fr(𝑉 ) → 𝐵 the projection map. GL𝑟 (R) acts on the right

of Fr(𝑉 ) via
(𝑏, 𝜙) · 𝜏 B (𝑏, 𝜙 ◦ 𝜏) .

There is a unique smooth structure on Fr(𝑉 ) such that (𝑝, 𝑅) is a GL𝑟 (R)–principal bundle. ♠
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Example 4.7. Let 𝑘, 𝑟 ∈ N with 𝑘 < 𝑟 . The Stiefel manifold St
∗
𝑘
(R𝑟 ) is the submanifold

St
∗
𝑘
(R𝑟 ) ≔ {(𝑣1, . . . , 𝑣𝑘 ) ∈ (R𝑟 )𝑘 : 𝑣1, . . . , 𝑣𝑘 linearly independent}

or, equivalently,

St
∗
𝑘
(R𝑟 ) ≔ {𝐴 ∈ Hom(R𝑘 ,R𝑟 ) : 𝐴 is injective}.

GL𝑘 (R) acts on the right of St
∗
𝑘
(R𝑟 ) via 𝑅(𝐴, 𝜏) ≔ 𝐴 ◦ 𝜏 . The map 𝑝 : St

∗
𝑘
(R𝑟 ) → Gr𝑘 (R𝑟 )

defined by

𝑝 (𝐴) ≔ im𝐴

together with 𝑅 is a GL𝑘 (R)–principal bundle. Of course, St
∗
𝑘
(R𝑟 ) is the frame bundle of the

tautological bundle over Gr𝑘 (R𝑟 ). ♠
Proposition 4.8. Let𝐺 be a Lie group. Let 𝑃 be smooth manifold. If 𝑅 : 𝑃 ×𝐺 → 𝑃 is a proper free
right action, then 𝑝 : 𝑃 → 𝐵 ≔ 𝑃/𝐺 together with 𝑅 is a 𝐺–principal fibre bundle.

Proof. This is a consequence of Proposition 3.12. ■

Exercise 4.9. The Hopf bundle 𝑝 : 𝑆2𝑛+1 → C𝑃𝑛 together with the right action defined by

𝑧 · 𝑒𝑖𝛼 B 𝑧𝑒𝑖𝛼 is a U(1)–principal bundle.
Exercise 4.10. Let 𝑛 ∈ N. Sp(1) ≔ {𝑞 ∈ H : |𝑞 | = 1} acts on 𝑆4𝑛+3 ⊂ H𝑛+1

by 𝑅 : 𝑆4𝑛+3×Sp(1) →
𝑆4𝑛+3

with

𝑅+(𝑥, 𝑞) ≔ 𝑞−1𝑥 .

The quotient of 𝑅 is the H𝑃𝑛 , the space of H–left modules 𝐿 ⊂ H𝑛+1
of dimension 1. The

projectionmap𝑞 : 𝑆4𝑛+3 → H𝑃𝑛 together with𝑅 is an Sp(1)–principal bundle—the quaternionic
Hopf bundle.

4.2 The action of gauge transformations on connections

Definition 4.11. Let (𝑝 : 𝑃 → 𝐵, 𝑅) and (𝑞 : 𝑄 → 𝐵, 𝑆) be 𝐺–principal fibre bundles. A mor-
phism (𝑝, 𝑅) → (𝑞, 𝑆) is a𝐺–equivariant smooth map 𝜙 : 𝑃 → 𝑄 satisfying 𝑞 ◦ 𝜙 = 𝑝 . A gauge
transformation of (𝑝, 𝑅) is an isomorphism (𝑝, 𝑅) → (𝑝, 𝑅). The gauge group of (𝑝, 𝑅) is the
group of all gauge transformations of (𝑝, 𝑅) and denoted by

G(𝑝, 𝑅). •

Exercise 4.12. Prove that every morphism of 𝐺–principal bundles is an isomorphism.

Exercise 4.13. Let (𝑝, 𝑅) be a 𝐺–principal bundle. Prove that (𝑝, 𝑅) is isomorphic to the trivial

𝐺–principal bundle if and only if 𝑝 admits a section.

The gauge group plays a very important role. The following concrete description of the

gauge group is quite useful.

Proposition 4.14. Let (𝑝 : 𝑃 → 𝐵, 𝑅) be 𝐺–principal fibre bundles. Denote by 𝐶∞(𝑃,𝐺)𝐶 the
subspace of 𝑢 ∈ 𝐶∞(𝑃,𝐺) satisfying

𝑅∗𝑔𝑢 = 𝐶𝑔−1𝑢, i.e., 𝑢 (𝑥𝑔) = 𝑔−1𝑢 (𝑥)𝑔

for every 𝑔 ∈ 𝐺
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(1) For every 𝑢 ∈ 𝐶∞(𝑃,𝐺)𝐶 the map 𝑢 ∈ 𝐶∞(𝑃, 𝑃) defined by

𝑢 (𝑥) = 𝑥 · 𝑢 (𝑥)

is a gauge transformation.

(2) The map ·̌ : 𝐶∞(𝑃,𝐺)𝐶 → G(𝑝, 𝑅) defined by the above is a bijection; in fact, a group
isomorphism.

Proof. To prove (1), it suffices to verify that 𝑢̃ is 𝐺–equivariant:

𝑢 (𝑥𝑔) = 𝑥𝑔 · 𝑢 (𝑥𝑔) = 𝑥𝑔 · 𝑔−1𝑢 (𝑥)𝑔 = 𝑥𝑢 (𝑥)𝑔 = 𝑢 (𝑥)𝑔.

Evidently, the map ·̌ : 𝐶∞(𝑃,𝐺)𝐶 → G(𝑝, 𝑅) is injective. To prove that it is surjective,

observe that if 𝑢 ∈ G(𝑝, 𝑅) then for every 𝑥 ∈ 𝑃 there is a unique 𝑢 (𝑥) ∈ 𝐺 such that

𝑢̃ (𝑥) = 𝑥 · 𝑢 (𝑥). The map 𝑢 ∈ Map(𝑃,𝐺) thus defined is smooth. The 𝐺–equivariance of 𝑢

follows from the 𝐺–equivariance of 𝑢.

It remains to prove that ·̌ is a group homomorphism. To see this observe that

𝑣 (𝑢 (𝑥)) = 𝑥 · 𝑢 (𝑥) · 𝑣 (𝑥 · 𝑢 (𝑥)) = 𝑥 · 𝑣 (𝑥) · 𝑢 (𝑥) . ■

Definition 4.15. Denote by ·̂ : G(𝑝, 𝑅) → 𝐶∞(𝑃,𝐺)𝐶 the inverse of ·̌ : 𝐶∞(𝑃,𝐺)𝐶 → G(𝑝, 𝑅). •
Example 4.16. If 𝐺 is an abelian group, then 𝐶∞(𝑃,𝐺)𝐶 consists precisely of the 𝐺–invariant

maps 𝐶∞(𝑃,𝐺)𝐺 � 𝐶∞(𝐵,𝐺). Therefore,G(𝑝, 𝑅) � 𝐶∞(𝐵,𝐺).
Let 𝐺 be an arbitrary Lie group. Denote by 𝑍 (𝐺) ≔ {𝑔 ∈ 𝐺 : 𝑔ℎ = ℎ𝑔 for every ℎ ∈ 𝐺} the

center of 𝐺 . Evidently,

𝐶∞(𝐵, 𝑍 (𝐺)) � 𝐶∞(𝑃, 𝑍 (𝐺))𝐶 ↩→ G(𝑝, 𝑅). ♠

Example 4.17. Let𝑉 → 𝐵 be a vector bundle of rank 𝑟 . Consider the frame bundle (𝑝 : Fr(𝑉 ) →
𝐵, 𝑅). For every 𝜆 ∈ R∗

the map 𝜀 : Fr(𝑉 ) → Fr(𝑉 ) defined by

𝜀 (𝑏, (𝑣1, . . . , 𝑣𝑟 )) ≔ 𝜀 (𝑏, (𝜆𝑣1, . . . , 𝜆𝑣𝑟 ))

is an example of a gauge transformation. ♠
Example 4.18. For the trivial 𝐺–principal bundle (𝑝 : 𝐵 × 𝐺 → 𝐵, 𝑅) the map 𝐶∞(𝐵,𝐺) →
G(𝑝, 𝑅) defined by𝐶∞(𝐵,𝐺) ∋ 𝛾 ↦→ 𝑢𝛾 defined by 𝑢𝛾 (𝑏,𝑔) ≔ (𝑏,𝛾 (𝑏)𝑔) is a group isomorphism.

(Observe that for general 𝐺–principal bundle the left-multiplication is not available.) ♠

4.3 Pulling back

Proposition 4.19. Let 𝑝 : 𝑃 → 𝐵 with 𝑅 be a𝐺–principal bundle. Let 𝑓 : 𝐴 → 𝐵 be a smooth map.
Denote by 𝑓 ∗𝑝 : 𝑓 ∗𝑃 → 𝐴 the pullback of 𝑝 : 𝑃 → 𝐵. Define 𝑓 ∗𝑅 : 𝑓 ∗𝑃 ×𝐺 → 𝑓 ∗𝑃 by

𝑓 ∗𝑅((𝑎, 𝑝), 𝑔) = (𝑎, 𝑅(𝑝,𝑔)) .

(𝑓 ∗𝑝, 𝑓 ∗𝑅) is a 𝐺–principal fibre bundle.
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Definition 4.20. The 𝐺–principal bundle (𝑓 ∗𝑝, 𝑓 ∗𝑅) constructed above is the pullback of (𝑝, 𝑅)
via 𝑓 . •

8

Example 4.21. Let𝐺 be a Lie group. Here is how to construct a fiber bundle 𝑝 : 𝑋 → 𝐵 with fibres

diffeomorphic to𝐺 but which cannot be turned into a𝐺–principal fibre bundle. Let 𝜙 ∈ Diff (𝐺).
Denote by 𝑋𝜙 ≔ ( [0, 1] ×𝐺)/∼ with ∼ generated by (1, 𝑥) ∼ (0, 𝜙 (𝑥)) the mapping torus of 𝜙 .

The projection 𝑝 : 𝑋𝜙 → 𝑆1
is a fibre bundle whose fibres are diffeomorphic to 𝐺 .

The right action of 𝐺 on [0, 1] ×𝐺 descends to 𝑋𝜙 if and only if 𝜙 (𝑔) = ℎ𝑔 for some ℎ ∈ 𝐺 .
Therefore, usually, 𝑝 cannot be turned into a𝐺–principal fibre in the obvious way. In fact, often,

𝑝 cannot be turned into a 𝐺–principal at all. To see this, observe that if there is a 𝑔 ∈ 𝐺 such

that 𝑔 and 𝜙 (𝑔) lie in the same connected component of 𝐺 , then 𝑝 admits a section. Therefore,

𝑝 is isomorphic to pr𝑆1 : 𝑆1 ×𝐺 → 𝑆1
. However, this implies that 𝜙 is isotopic to id𝐺 .

To make this concrete consider the orientation reversing diffeomorphism 𝜙 ∈ Diff (U(1))
defined by 𝜙 (𝑒𝑖𝛼 ) ≔ 𝑒−𝑖𝛼 . The mapping torus 𝑇𝜙 is the Klein bottle; hence, not diffeomorphic

to 𝑆1 × U(1). However, the projection 𝑝 : 𝑇𝜙 → 𝑆1
admits a section 𝑠 (𝑏) ≔ [𝑏, 1]. ♠

4.4 𝐺–principal connections

Proposition 4.22. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 × 𝐺 → 𝑃) be a 𝐺–principal fibre bundle. The map
𝜅 : 𝑃 × 𝔤 → 𝑉𝑝 defined by

𝜅 (𝑝, 𝜉) ≔ d

d𝑡

����
𝑡=0

𝑅(𝑝, exp(𝑡𝜉)) = 𝑇1𝑅𝑝 ◦ ev1(𝜉) .

is an isomorphism. ■

The isomorphism𝜅 simplifies the theory of connections (or at least it makes it more concrete).

Definition 4.23. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ⟲ 𝐺) be a 𝐺–principal fibre bundle. For 𝜉 ∈ 𝔤 define

𝑣𝜉 ∈ Γ(𝑉𝑝) by
𝑣𝜉 (𝑝) ≔ 𝜅 (𝑝, 𝜉) . •

Exercise 4.24. Prove that 𝔤 → Vect(𝑃), 𝜉 ↦→ 𝑣𝜉 is a Lie algebra homomorphism.

Exercise 4.25. Construct a fibre bundle 𝑝 : 𝑋 → 𝐵 whose fibres are diffeomorphic to 𝑆1
but

which cannot be equipped with a 𝑆1
action 𝑅 making (𝑝, 𝑅) into an 𝑆1

–principal bundle.

Definition 4.26. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ⟲ 𝐺) be a 𝐺–principal fibre bundle. A 𝐺–principal
connection on (𝑝, 𝑅) is a 𝐺–equivariant left splitting of the short exact sequence of vector

bundles (equipped with right 𝐺 actions)

𝑃 × 𝔤 ↩→ 𝑇𝑃 ↠ 𝑝∗𝑇𝐵;

that is: an 𝐴 ∈ Ω1(𝑃, 𝔤) such that

𝐴(𝑣𝜉 ) = 𝜉
and

𝑅∗𝑔𝐴 = Ad(𝑔−1) ◦𝐴.
The space of connections on (𝑝, 𝑅) is denoted byA(𝑝, 𝑅). •
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Remark 4.27. The horizontal distribution 𝐻𝐴 B ker𝐴 of a 𝐺–principal connection is character-

ized by its 𝐺–invariance: that is 𝑇𝑅𝑔𝐻𝐴 = 𝐻𝐴 for every 𝑔 ∈ 𝐺 . ♣
Proposition 4.28. Every 𝐺–principal connection is complete.

Proof. Exercise. ■

4.5 Equivariant differential forms

Definition 4.29. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 × 𝐺 → 𝑃) be a 𝐺–principal fibre bundle. Let 𝑉 be

a finite-dimensional vector space. Let 𝜌 : 𝐺 → GL(𝑉 ) be a representation of 𝐺 . 𝐺 acts on

Ω•(𝑃,𝑉 ) via
𝑔 · 𝛼 ≔ 𝜌 (𝑔) ◦ 𝑅∗𝑔𝛼.

Set

Ω•
hor

(𝑃,𝑉 )𝐺 = Ω•
hor

(𝑃,𝑉 )𝜌 ≔ {𝛼 ∈ Ω•
hor

(𝑃,𝑉 ) : 𝑔 · 𝛼 = 𝛼 for every 𝑔 ∈ 𝐺}. •

Remark 4.30. The above construction is particularly important for the adjoint representation

𝜌 : 𝐺 → GL(Lie(𝐺)). ♣
Proposition 4.31. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ×𝐺 → 𝑃) be a 𝐺–principal fibre bundle. A(𝑝, 𝑅) is an
affine space modelled on Ω1

hor
(𝑃, Lie(𝐺))Ad.

Proof. Exercise; cf. ??. ■

Proposition 4.32. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ×𝐺 → 𝑃) be a𝐺–principal fibre bundle. Let𝐴 ∈ A(𝑝, 𝑅).
Denote by 𝜎𝐴 : 𝑇𝑃 → 𝐻𝐴 the projection onto 𝐻𝐴. Let 𝑉 be a finite-dimensional vector space. Let
𝜌 : 𝐺 → GL(𝑉 ) be a representation of 𝐺 . There is a unique linear map

d𝐴 : Ω•
hor

(𝑃,𝑉 )𝜌 → Ω•+1

hor
(𝑃,𝑉 )𝜌

such that

d𝐴𝛼 = d𝛼 + (Lie(𝜌)𝐴) ∧ 𝛼.

Proof. Le 𝛼 ∈ Ω𝑘
hor

(𝑃,𝑉 )𝜌 . Set d𝐴𝛼 B d𝛼 + (Lie(𝜌)𝜃𝐴) ∧ 𝛼 . By direct computation,

𝑅∗𝑔d𝐴𝛼 = d𝑅∗𝑔𝛼 + Lie(𝜌)𝑅∗𝑔𝐴 ∧ 𝑅∗𝑔𝛼
= d𝜌 (𝑔−1)𝛼 + Lie(𝜌) Ad(𝑔−1)𝐴 ∧ 𝜌 (𝑔−1)𝛼
= 𝜌 (𝑔−1) (d𝛼 + Lie(𝜌)𝐴 ∧ 𝛼)
= 𝜌 (𝑔−1)d𝐴𝛼.
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Therefore, d𝐴𝛼 is 𝐺–equivariant. To verify that d𝐴𝛼 is horizontal, the 𝜉 ∈ 𝔤 and denote by

𝑣1, . . . , 𝑣𝑘 𝐺–invariant local vector field. By direct computation.

d𝛼 (𝑣𝜉 , 𝑣1 . . . , 𝑣𝑘 ) = L𝑣𝜉 (𝛼 (𝑣1, . . . , 𝑣𝑘 ))

=
d

d𝑡

����
𝑡=0

(𝑅∗
exp(𝑡𝜉 )𝛼) (𝑣1, . . . , 𝑣𝑘 ))

=
d

d𝑡

����
𝑡=0

𝜌 (exp(−𝑡𝜉)) ◦ 𝛼 (𝑣1, . . . , 𝑣𝑘 ))

= − Lie(𝜌) (𝜉) ◦ 𝛼 (𝑣1, . . . , 𝑣𝑘 )
= −(Lie(𝜌) (𝜃𝐴) ∧ 𝛼) (𝑣𝜉 , 𝑣1, . . . , 𝑣𝑘 ). ■

Therefore, d𝐴𝛼 is horizontal.

Remark 4.33. The maps d𝐴 : Ω•
hor

(𝑃,𝑉 )𝜌 → Ω•+1

hor
(𝑃,𝑉 )𝜌 are compatible with the usual opera-

tions on representations, in particular, ⊗ and ⊕. One consequence of this is that Ω•
hor

(𝑃,𝑉 ) is a
(left-)module over Ω•

hor
(𝑃)𝐺 � Ω•(𝐵) and d𝐴 satisfies the corresponding Leibniz rule. ♣

4.6 Curvature

Proposition 4.34. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ×𝐺 → 𝑃) be a𝐺–principal fibre bundle. Let𝐴 ∈ A(𝑝, 𝑅).

(1) There is a unique 𝐺–invariant horizontal 2–form 𝐹𝐴 ∈ Ω2

hor
(𝑃, 𝔤)Ad such that for every

𝑣,𝑤 ∈ Γ(𝐻𝐴)
𝐹𝐴 (𝑣,𝑤) = −𝐴( [𝑣,𝑤]) .

𝐹𝐴 is the curvature of 𝐴.

(2) 𝐹𝐴 can be computed as

𝐹𝐴 = d𝐴 + 1

2

[𝐴 ∧𝐴]

(3) 𝐹𝐴 satisfies the Bianchi identity
d𝐴𝐹𝐴 = 0.

(4) If 𝜌 : 𝐺 → GL(𝑉 ) is a finite-dimensional representation of 𝐺 , then d𝐴 : Ω•
hor

(𝑃,𝑉 )𝜌 →
Ω•+1

hor
(𝑃,𝑉 )𝜌 satisfies

d𝐴 ◦ d𝐴 = (Lie(𝜌) ◦ 𝐹𝐴) ∧ ·.

Remark 4.35. One sometimes sees the formula 𝐹𝐴 = d𝐴𝐴. This is correct, but it easily leads

to confusion. The issue is that one is tempted to forget the original definition of d𝐴 and use

Proposition 4.32 ?? instead; however: 𝐴 is (not at all) horizontal and this formula obviously

does not hold for 𝐴. ♣

Proof of Proposition 4.34. Define 𝐹𝐴 ≔ d𝐴 + 1

2
[𝐴 ∧𝐴] and compute

𝐹𝐴 (𝑣,𝑤) = L𝑣𝐴(𝑤) −L𝑤𝐴(𝑣) −𝐴( [𝑣,𝑤]) + [𝐴(𝑣), 𝐴(𝑤)] .
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This matches −𝐴(𝑣,𝑤) for 𝑣,𝑤 ∈ Γ(𝐻𝐴).
If 𝜉 ∈ 𝔤 and𝑤 ∈ Γ(𝐻𝐴) is 𝐺–invariant, then

𝐹𝐴 (𝑣𝜉 ,𝑤) = L𝑤𝜉 −𝐴( [𝑣𝜉 ,𝑤]) = 0.

The first term vanishes because 𝜉 is constant. The second term vanishes because 𝑤 is 𝐺–

invariant.

For 𝜉, 𝜂 ∈ 𝔤

𝐹𝐴 (𝑣,𝑤) = L𝑣𝜉𝜂 −L𝑣𝜂𝜉 −𝐴( [𝑣𝜉 , 𝑣𝜂]) + [𝜉, 𝜂] .
The first two term vanish because 𝜉 ,𝜂 are constant. The last two terms cancel because 𝜉 ↦→ 𝑣𝜉 is

a Lie algebra homomorphism. (This is, of course, essentially the proof of the Maurer–Cartan

equation.)

The 𝐺–invariance of 𝐹𝐴 follows from the 𝐺–invariance of 𝐴. Thus (1) and (2) are proved.

d𝐴𝐹𝐴 = (d + [𝐴 ∧ ·])(d𝐴 + 1

2

[𝐴 ∧𝐴])

=
1

2

( [d𝐴 ∧𝐴] − [𝐴 ∧ d𝐴]) + [𝐴 ∧ d𝐴] + 1

2

[𝐴 ∧ [𝐴 ∧𝐴]]

= 0

because the first three term cancel and the last term vanishes by the Jacobi identity.

(4) follows by direct computation. ■

4.7 Parallel transport

Proposition 4.36. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ⟲ 𝐺) be a 𝐺–principal fibre bundle. Let 𝐴 ∈ A(𝑝, 𝑅).
Let 𝛾 : [0, 1] → 𝐵 be a piecewise smooth path. The parallel transport tra

𝐴
𝛾 is 𝐺–equivariant; that

is: for every 𝑥 ∈ 𝑝−1(𝛾 (0)) and 𝑔 ∈ 𝐺

tra
𝐴
𝛾 (𝑥) · 𝑔 = tra

𝐴
𝛾 (𝑥 · 𝑔) .

Proof. This is a consequence of 𝐴 being 𝐺–invariant. ■

Remark 4.37. Let 𝑥0 ∈ 𝑝−1(𝑏0). There is a 𝑔 ∈ 𝐺 such that tra
𝐴
𝛾 (𝑥0) = 𝑥0 · 𝑔. Every element of

𝑝−1(𝑏0) is of the form 𝑥0 · ℎ for some ℎ ∈ 𝐺 . Since tra
𝛾

𝐴
is 𝐺–invariant,

tra
𝐴
𝛾 (𝑥0ℎ) = tra

𝐴
𝛾 (𝑥0)ℎ = 𝑥0 · 𝑔ℎ. ♣

Definition 4.38. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ⟲ 𝐺) be a𝐺–principal fibre bundle. Let𝐴 ∈ A(𝑝, 𝑅). Let
𝑏0 ∈ 𝐵 and 𝑥0 ∈ 𝑝−1(𝑏0). The holonomy group of 𝐴 based at 𝑥0 is the subgroup Hol𝑥0

(𝐴) < 𝐺
defined by

Hol𝑥0
(𝐴) ≔ {𝑔 ∈ 𝐺 : (★)}

with (★) meaning that there is a piecewise smooth loop 𝛾 : [0, 1] → 𝐵 based at 𝑏0 with

tra
𝐴
𝛾 (𝑥0) = 𝑥0 ·𝑔. The restricted holonomy group of𝐴 based at 𝑥0 is the subgroup Hol

0

𝑥0

(𝐴) < 𝐺
defined by

Hol
0

𝑥0

(𝐴) ≔ {𝑔 ∈ 𝐺 : (†)}
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with (†) meaning that there is a null-homotopic piecewise smooth loop 𝛾 : [0, 1] → 𝐵 based at

𝑏0 with tra
𝐴
𝛾 (𝑥0) = 𝑥0 · 𝑔. •

Proposition 4.39. The holonomy group and the restricted holonomy group are Lie subgroups of𝐺 .

Proof sketch. Hol
0

𝑥0

(𝐴) is path-connected and therefore a Lie subgroup of 𝐺 . Parallel transport

defines a group homomorphism 𝜋1(𝐵,𝑏0) → Hol𝑥0
(𝐴)/Hol

0

𝑥0

(𝐴). With Γ denoting its image

Hol𝑥0
(𝐴) =

∐
𝛾 ∈Γ

𝑔 · Hol
0

𝑥0

(𝐴).

Use this to construct a smooth structure on Hol𝑥0
(𝐴). ■

Remark 4.40. The above underlines that 𝐺–principal connections are really much simpler

than general Ehresmann connections. The holonomy group of an Ehresmann connection is a

subgroup of Diff (𝑝−1(𝑏0)), a possibly wild infinite-dimensional beast; while that of a𝐺–principal

connection sits inside a fixed finite dimensional Lie group. ♣

4.8 The action of gauge transformations on connections

Definition 4.41. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝐺 ⟳ 𝑃) be a 𝐺–principal fibre bundle. G(𝑝, 𝑅) acts on the

right ofA(𝑝, 𝑅) by pullback:

𝐴 · 𝑢 = 𝑢∗𝐴. •
Recall the identification

·̂ : G(𝑝, 𝑅) → 𝐶∞(𝑃,𝐺)𝐶 .
Proposition 4.42. The above action has the following properties.

(1) With 𝜇 denoting the Maurer–Cartan form:

𝑢∗𝐴 = Ad(𝑢−1) ◦𝐴 + 𝑢∗𝜇.

(More informally: 𝑢∗𝐴 = 𝑢−1𝐴𝑢 + 𝑢−1
d𝑢.)

(2) The horizontal subspaces of 𝐴 and 𝑢∗𝐴 are related by

𝐻𝑢∗𝐴 = 𝑇𝑢−1(𝐻𝐴) .

(3) The pullback via the gauge transformation 𝑢 preserves Ω•(𝑃,𝑉 )𝜌 and

d𝑢∗𝐴 = 𝑢∗ ◦ d𝐴 ◦ (𝑢−1)∗.

(4) The curvatures of 𝐴 and 𝑢∗𝐴 are related by

𝐹𝑢∗𝐴 = Ad(𝑢−1)𝐹𝐴 .

(5) The parallel transports of 𝐴 and 𝑢∗𝐴 are related by

tra
𝑢∗𝐴
𝛾 = 𝑢−1 ◦ tra

𝐴
𝛾 ◦ 𝑢.
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Proof. Evidently, 𝐻𝑢∗𝐴 = 𝑇𝑢−1(𝐻𝐴).
Since

d

d𝑡

����
𝑡=0

𝑅𝑔 exp(𝑡𝜉 )𝑥 =
d

d𝑡

����
𝑡=0

𝑅exp(𝑡𝜉 )𝑅𝑔 (𝑥)

= 𝑣𝜉 (𝑅𝑔 (𝑥)),

the derivative of the map 𝑥 ↦→ 𝑅𝑢̂ (𝑥 ) (𝑦) is

𝑣𝑢̂∗𝜇 (𝑅𝑢̂ (𝑥 ) (𝑦)) .

Since 𝑢 (𝑥) = 𝑅𝑢̂ (𝑥 ) (𝑥),

𝑇𝑥𝑢 (𝑥) = 𝑇𝑥𝑅𝑢̂ (𝑥 ) (𝑥) + 𝑣 (𝑢̂∗𝜇 ) (𝑥 ) (𝑅𝑢̂ (𝑥 ) (𝑥)) .

Therefore,

𝜃𝑢∗𝐴 = 𝑢∗𝐴

= Ad(𝑢−1) ◦𝐴 + 𝑢∗𝜇. ■

4.9 Associated fibre bundles

Proposition 4.43 (Construction of associated fibre bundles). Let𝐺 be a Lie group. Let (𝑝 : 𝑃 → 𝐵,
𝑅 : 𝑃 ⟲ 𝐺) be a 𝐺–principal fibre bundle. Let 𝐹 be a smooth manifold together with a left action
𝜆 : 𝐺 ⟳ 𝐹 . Define the right action 𝑆 : 𝑃 × 𝐹 ⟲ 𝐺 defined by

𝑆𝑔 (𝑥, 𝑓 ) B (𝑅𝑔 (𝑥), 𝜆−1

𝑔 (𝑓 )) .

(1) 𝑆 admits a quotient

𝑞 : 𝑃 × 𝐹 → (𝑃 × 𝐹 )/𝐺 ≕ 𝑃 ×𝜆 𝐹 = 𝑃 ×𝐺 𝐹 .

Moreover, (𝑞, 𝑆) is a 𝐺–principal fibre bundle.

(2) The map 𝑟 : 𝑃 ×𝜆 𝐹 → 𝐵 defined by

𝑟 ( [𝑥, 𝑓 ]) B 𝑝 (𝑥)

is a fibre bundle—the associated fibre bundle of (𝑝, 𝑅) and 𝜆.

(3) The diagram

𝑃 × 𝐹 𝑃

𝑃 ×𝜆 𝐹 𝐵

pr𝑃

𝑞 𝑝

𝑟

is a pullback (along both 𝑝 and 𝑟 ); that is: the map 𝜙 : 𝑃 × 𝐹𝑡𝑜𝑝∗(𝑃 ×𝜆 𝐹 ) defined by
𝜙 (𝑥, 𝑓 ) B (𝑥, [𝑥, 𝑓 ]) is defines an isomorphism 𝜙 : pr𝑃 → 𝑝∗𝑟 of fibre bundles over 𝑃 ;
and the map𝜓 : 𝑃 × 𝐹 → 𝑟 ∗𝑃 defined by𝜓 (𝑥, 𝑓 ) B ( [𝑥, 𝑓 ], 𝑥) is defines an isomorphism
𝜓 : (𝑞, 𝑆) → 𝑟 ∗(𝑝, 𝑅) of 𝐺–principal fibre bundles.
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Proof. Let {𝑈𝑖 : 𝑖 ∈ 𝐼 } be an open cover of 𝐵 such that 𝑝−1(𝑈𝑖) is𝐺–equivariantly diffeomorphic

to 𝑈𝑖 ×𝐺 . Evidently, (𝑝−1(𝑈𝑖) × 𝐹 )/𝐺 � (𝑈𝑖 ×𝐺 × 𝐹 )/𝐺 � 𝑈𝑖 × 𝐹 exists. This implies (1), (2),

and (3). ■

Example 4.44. Let 𝑉 → 𝐵 be a real (complex) vector bundle of rank 𝑟 . Denote by (𝑝 : Fr(𝑉 ) →
𝐵, 𝑅) the frame bundle of 𝑉 → 𝐵. GL𝑟 (R) (GL𝑟 (C)) acts on R𝑃𝑛 (C𝑃𝑛) The associated fibre

bundle Fr(𝑉 ) ×GL𝑟 (R) R𝑃
𝑛
(Fr(𝑉 ) ×GL𝑟 (R) C𝑃

𝑛
) is the projectivisation of 𝑉 and denoted by

P(𝑉 ) → 𝐵. ♠
Example 4.45. Let 𝑛 ∈ Z. The Hirzebruch surface Σ𝑛 is

Σ𝑛 ≔ P(OP1 ⊕ OP1 (𝑛)) . ♠

Proposition 4.46 (sections and 𝐺–equivariant maps). Assume the situation of Proposition 4.43.
Consider the set of sections

Γ(𝑟 ) ≔ {𝑠 ∈ 𝐶∞(𝐵, 𝑃 ×𝜆 𝐹 ) : 𝑟 ◦ 𝑠 = id𝐵}

and the set of the 𝐺–equivariant maps

𝐶∞(𝑃, 𝐹 )𝜆 B {𝑠 ∈ 𝐶∞(𝑃, 𝐹 ) : 𝑠 (𝑥𝑔) = 𝑔−1𝑠 (𝑥)}.

There is a unique bijection
·̂ : Γ(𝑟 ) → 𝐶∞(𝑃, 𝐹 )𝜆

such that, for every 𝑠 ∈ Γ(𝑟 ) and 𝑥 ∈ 𝑃 ,

𝑠 (𝑝 (𝑥)) = [𝑥, 𝑠 (𝑥)] .

Proof. Clearly for every 𝑠 ∈ Γ(𝑟 ) there is a unique 𝑠 ∈ Map(𝑃, 𝐹 ) as above. Since [𝑥𝑔, 𝑠 (𝑥𝑔)] =
𝑠 (𝑝 (𝑥𝑔)) = 𝑠 (𝑝 (𝑥)) = [𝑥, 𝑠], 𝑠 is 𝐺–equivariant. Considerations in local trivialisations show

that 𝑠 is smooth. This proves that ·̂ is defined and injective. Evidently, it is also surjective. ■

The construction of an Ehresmann connection on 𝑟 from an 𝐺–principal
connection on (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ⟲ 𝐺) is omitted.

4.10 Associated vector bundles

Proposition 4.47. Let𝐺 be a Lie group. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ⟲ 𝐺) be a𝐺–principal fibre bundle.
Let 𝜆 : 𝐺 → GL(𝑉 ) be a finite-dimensional representation. Consider the associated fibre bundle
𝑟 : 𝑃 ×𝜆 𝑉 → 𝐵.

(1) There are unique vector space structure on the fibres of 𝑟 such that 𝑟 becomes a vector bundle
and the isomorphism of fibre bundles 𝑝∗(𝑃 ×𝜆 𝑉 ) → 𝑃 × 𝑉 is an isomorphism of vector
bundles. This is the vector bundle associated with (𝑝, 𝑅) and 𝜆.

(2) If 𝛼 ∈ Ω•(𝐵, 𝑃 ×𝜆 𝑉 ), then 𝛼 ≔ pr𝑉𝑝
∗𝛼 ∈ Ω•

hor
(𝑃,𝑉 )𝜆 . This defines a bijection

·̂ : Ω•(𝐵, 𝑃 ×𝜆 𝑉 ) → Ω•
hor

(𝑃,𝑉 )𝜆 .
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(3) There is a unique covariant derivative d𝐴 on 𝑃 ×𝜆 𝑉 such that

Ω•(𝐵, 𝑃 ×𝜆 𝑉 ) Ω•+1(𝐵, 𝑃 ×𝜆 𝑉 )

Ω•
hor

(𝑃,𝑉 )𝜆 Ω•+1

hor
(𝑃,𝑉 )𝜆 .

d𝐴

·̂ ·̂
d𝐴

Moreover, if𝐺 = GL(𝑉 ) and 𝜆 = id, then every covariant derivative on 𝑃 ×𝜆 𝑉 arises from a
unique GL(𝑉 )–principal connection 𝐴.

Proof. It suffices to prove (1) for the trivial bundle pr𝐵 : 𝐵 × 𝐺 → 𝐵. In this case the map

𝑞 : (𝐵 × 𝐺) × 𝑉 → 𝐵 × 𝑉 defined by ((𝑏,𝑔), 𝑣) ↦→ (𝑏, 𝜆(𝑔)𝑣) is 𝐺–invariant and every 𝐺–

invariant map from (𝐵 ×𝐺) ×𝑉 factors through 𝑞. Therefore, (𝐵 ×𝐺) ×𝜆 𝑉 is (isomorphic) to

𝐵 ×𝑉 .
(2) is an analogous to the earlier statement about sections.

The first part of (3) follows from the fact that d𝐴 is compatible with tensor products. It suffices

to verify the second part for the trivial bundle. In this case 𝑃 = 𝐵 × GL(𝑉 ) and the quotient

map 𝑞 : 𝑃 ×𝑉 → 𝑃 ×𝜆 𝑉 = 𝐵 ×𝑉 is 𝑞(𝑏,𝑔, 𝑣) ≔ (𝑏, 𝜆(𝑔)𝑣). The map 𝑟 : 𝑃 ×𝜆 𝑉 = 𝐵 ×𝑉 → 𝐵 is

𝑟 = pr𝐵 . The product connection gives rise to the covariant derivative d : 𝐶∞(𝐵,𝑉 ) → Ω1(𝐵,𝑉 ).
Any other covariant derivative is of the form d + 𝑎 with 𝑎 ∈ Ω1(𝐵, 𝔤𝔩(𝑉 )). Denote by 𝜃0 the

connection 1–form of the trivial connection. Then 𝜃0 + Ad(pr𝐺 )−1 · 𝑟 ∗𝑎 is a connection 1–form

and induces d + 𝑎. ■

Example 4.48. Let 𝑋 be a smooth manifold of dimension 𝑛. Denote by 𝑝 : Fr(𝑇𝑋 ) → 𝑋 the

frame bundle of𝑇𝑋 . The orientation double cover of 𝑋 is the fibre bundle associated with (𝑝, 𝑅)
and the action of GL𝑛 (R) on {±1} induced by the group homomorphism GL𝑛 (R) → {±1} given
by

𝜙 ↦→ det𝜙

|det𝜙 | . ♠

Example 4.49. Let 𝑠 ⩾ 0 and 𝑛 ∈ N0. A 𝑠–density on R𝑛 is a map 𝜇 : (R𝑛)×𝑛 → R such that for

every 𝐴 ∈ GL𝑛 (R) and 𝑣1, . . . , 𝑣𝑛 ∈ R𝑛

𝜇 (𝜙 (𝑣1), . . . , 𝜙 (𝑣𝑛)) = |det𝜙 |𝑠𝜇 (𝑣1, . . . , 𝑣𝑛) .

The set of 𝑠–densities is a 1–dimensional vector space: 𝐷𝑠 (R𝑛).
Let 𝑋 be a smooth manifold of dimension 𝑛. Denote by 𝑝 : Fr(𝑇𝑋 ) → 𝑋 the frame bundle

of 𝑇𝑋 . The bundle of 𝑠–densities on 𝑋 is

𝐷𝑠 (𝑇𝑋 ) ≔ Fr(𝑇𝑋 ) ×GL𝑛 (𝑅) 𝐷
𝑠 (R𝑛) .

A density is a 1–density and 𝐷 (𝑇𝑋 ) ≔ 𝐷1(𝑇𝑋 ). ♠
Exercise 4.50. Let 𝑋 be a closed smooth manifold (possibly not oriented). Construct a linear

map ˆ
𝑋

: 𝐷 (𝑇𝑋 ) → R

(worthy of its notation).
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Example 4.51. Let𝑉 → 𝐵 be a vector bundle rank 𝑟 . Denote the corresponding frame bundle by

Fr(𝑉 ) of isomorphisms 𝜙 : R𝑟 → 𝑉𝑥 . The map ev : Fr(𝑉 ) × R𝑟 → 𝑉 defined by

((𝑥, 𝜙), 𝑣) ≔ (𝑥, 𝜙 (𝑣))

is 𝐺–invariant and exhibits 𝑉 as (isomorphic to) Fr(𝑉 ) ×𝜆 R𝑟 with 𝜆 ≔ id : GL𝑟 (R) → GL𝑟 (R).
♠

Remark 4.52. The frame bundle formalism is a convenient way to carry linear algebra construc-

tions over to vector bundles:

(1) Denote by 𝜆∗ : GL𝑟 (R) → GL((R𝑟 )∗) the contragredient representation defined by

𝜆∗(𝑔)𝜆 ≔ 𝜆 ◦ 𝜆(𝑔−1) .

Fr(𝑉 ) ×𝜆∗ (R𝑟 )∗ � 𝑉 ∗
.

(2) Denote by Λ𝑘𝜆 : GL𝑟 𝑟 (R) → GL(Λ𝑘 (R𝑟 )) the representation defined by

(Λ𝑘𝜆) (𝑔)𝛼 ≔ Λ𝑘 (𝜆(𝑔))𝛼.

Fr(𝑉 ) ×Λ𝑘𝜆 Λ
𝑘R𝑟 � Λ𝑘𝑉 . ♣

4.11 Reduction of the structure group

Definition 4.53 (Extension of structure group). Let 𝐺,𝐻 be Lie groups, 𝜆 : 𝐻 → 𝐺 a Lie group

homomorphism, and (𝑞 : 𝑄 → 𝐵, 𝑆 : 𝑄 ⟲ 𝐻 ) an 𝐻–principal bundle. The extension of (𝑞, 𝑆)
along 𝜆 is the 𝐺–principal bundle (𝑝, 𝑅) with 𝑝 : 𝑃 B 𝑄 ×𝜆 𝐺 → 𝐵 denoting the fibre bundle

associated with (𝑝, 𝑅) and 𝜆, and 𝑅 : 𝑃 ⟲ 𝐺 defined by 𝑅( [𝑥, 𝑔], ℎ) B [𝑥, 𝑔ℎ]. •
Exercise 4.54. Prove that (𝑝, 𝑅) is a 𝐺–principal fibre bundle.

This raises the question of when one can undo this construction.

Definition 4.55 (Reduction of structure group). Let 𝐺,𝐻 be Lie groups, 𝜆 : 𝐻 → 𝐺 a Lie group

homomorphism, and (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ⟲ 𝐺) be a 𝐺–principal fibre bundle. A reduction of
(𝑝, 𝑅) along 𝜆 is an 𝐻–principal fibre bundle (𝑞 : 𝑄 → 𝐵, 𝑆 : 𝑄 ⟲ 𝐻 ) together with a smooth

𝐻–equivariant map 𝜙 : 𝑄 → 𝑃 satisfying 𝑝 ◦ 𝜙 = 𝑞. Two reductions (𝑞1, 𝑆1;𝜙1) and (𝑞2, 𝑆2;𝜙2)
are isomorphic if there is an isomorphism𝜓 : (𝑞1, 𝑆1) → (𝑞2, 𝑆2) such that 𝜙2 ◦𝜓 = 𝜙1. Denote

by Red𝜆 (𝑝, 𝑅) the set of isomorphism classes of reductions of (𝑝, 𝑅) along 𝜆. •
Remark 4.56. In the situation of Definition 4.55, the map

𝑄 ×𝐻 𝐺 → 𝑃, [𝑞,𝑔] ↦→ 𝑖 (𝑞)𝑔

is an isomorphism of 𝐺–principal bundles. ♣
Example 4.57. A trivialization is a reduction to the trivial group. ♠
Example 4.58. Let (𝑉 ,𝑔) be a Euclidean vector bundle over 𝐵. Denote by 𝑝 : Fr(𝑉 ) → 𝐵 and

𝑞 : FrO(𝑉 ) → 𝐵 the frame bundle and the orthogonal frame bundle. The inclusion FrO(𝑉 ) →
Fr(𝑉 ) is a reduction. ♠
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Example 4.59. Let𝑉 be an oriented Euclidean vector bundle over 𝐵 of rank 𝑟 . A spin structure on
𝑉 is a reduction of FrSO(𝑉 ), the positive orthonormal frame bundle, along Spin(𝑟 ) → SO(𝑟 ). ♠

Reductions along a general Lie group homomorphism 𝜆 : 𝐻 → 𝐺 can be quite deliciate.

However, if 𝜆 is the inclusion of a closed subgroup, then the problem can be understood very

concretely.

Proposition 4.60. Let 𝐺 be a Lie group, 𝐻 ↬ 𝐺 an immersed Lie subgroup, and (𝑝 : 𝑃 →
𝐵, 𝑅 : 𝑃 ⟲ 𝐺) a 𝐺–principal bundle. Denote by 𝑐∞(𝑃,𝐺/𝐻 )𝐺 the set of those 𝑠 ∈ Map(𝑃,𝐺/𝐻 )𝐺
𝑏 ∈ 𝐵, there is an open subset𝑈 ⊂ 𝐵 with 𝑏 ∈ 𝑈 such that 𝑠 |𝑝−1 (𝑈 ) lifts to 𝐶∞(𝑝−1(𝑈 ),𝐺).

(1) Let (𝑞, 𝑆 ;𝜙) be a 𝜆–reduction of (𝑝, 𝑅). There is a unique 𝑠 ∈ 𝑐∞(𝑃,𝐺/𝐻 )𝐺 such that for
every 𝑥 ∈ 𝑃

𝑥𝑠 (𝑥) ∈ im𝜙.

(2) Let 𝑠 ∈ 𝑐∞(𝑃,𝐺/𝐻 )𝐺 . 𝑄 B 𝑠−1(1𝐻 ) is an immersed submanifold and 𝐻 preserves 𝑄 .
Moreover, (𝑞 : 𝑄 B→ 𝐵, 𝑆 B 𝑅 |𝑄 ;𝜙 : 𝑄 ↩→ 𝑃) is a 𝜆–reduction of (𝑝, 𝑅).

The above establishes a bijection

Red𝜆 (𝑝, 𝑅) � 𝑐∞(𝑃,𝐺/𝐻 )𝐺 .

Remark 4.61. If 𝐻 < 𝐺 is a closed Lie subgroup, then the quotient 𝐺/𝐻 exists as a smooth

manifold and 𝑐∞(𝑃,𝐺/𝐻 )𝐺 = 𝐶∞(𝑃,𝐺/𝐻 )𝐺 � Γ(𝑃 ×𝐺 𝐺/𝐻 ). (It’s tempting to pretend that

𝐺/𝐻 is smooth manifold.) ♣

Proof of Proposition 4.60. Evidently, 𝑠 ∈ Map(𝑃,𝐺/𝐻 )𝐺 is uniquely determined. To verify that

𝑠 has local smooth lifts it suffices to consider the case where 𝑞, 𝑝 are trivial. In this case

𝜙 : 𝐵×𝐻 → 𝐵×𝐺 . Define 𝛾 : 𝐵 → 𝐺 by 𝜙 (𝑏, 1) = (𝑏,𝛾 (𝑏)) Observe that (𝑏,𝑔) ·𝑔−1𝛾 (𝑏) ∈ im𝜙

and (𝑏,𝑔) ↦→ 𝑔−1𝛾 (𝑏) is smooth.

Since 𝑠 has local smooth lifts which are transverse to 𝐻 , by equivariance, 𝑄 ⊂ 𝑃 is an

immersed submanifold. Moreover, the action of 𝐻 preserves 𝑄 . To prove that (𝑞 B 𝑝 |𝑄 : 𝑄 →
𝐵, 𝑆) is an 𝐻–principal fibre bundle it remains to exhibit local trivialisations. For this it suffices

to consider the trivial 𝐺–principal fibre bundle, in which case it is trivial. ■

Example 4.62. Let 𝑉 be a real vector bundle over 𝐵 of rank 𝑛. Denote by Fr(𝑉 ) → 𝐵 its frame

bundle.

(1) A reduction of Fr(𝑉 ) to GL(C𝑛/2) corresponds to a section of Fr(𝑉 )×GL(R𝑛 )GL(R𝑛)/GL(C𝑛/2).
The latter correspond precisely to the almost complex structures on 𝑉 .

(2) A reduction of Fr(𝑉 ) to GL
+(𝑛) corresponds to a section of Fr(𝑉 )×GL(R𝑛 )GL(R𝑛)/GL

+(R𝑛).
The latter correspond precisely to the orientations on 𝑉 .

(3) A reduction of Fr(𝑉 ) to O(𝑛) corresponds to a section of Fr(𝑉 ) ×GL(R𝑛 ) GL(R𝑛)/O(𝑛).
The latter correspond precisely to Euclidean inner products on 𝑉 . ♠
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4.12 The holonomy bundle

It is a natural question to ask: given a 𝐺–principal bundle, what is the smallest possible

reduction? This question is quite difficult. But if the reduction is required to be compatible with

a connection, it becomes easy.

Theorem 4.63 (Reduction to the holonomy group). Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ⟲ 𝐺) be a𝐺–principal
bundle with 𝐵 connected, 𝐴 ∈ A(𝑝, 𝑅), and 𝑥 ∈ 𝑃 . Define

𝑃𝐴,𝑥 ≔ {𝑦 ∈ 𝑃 : there is an 𝐴–horizontal path from 𝑥 to 𝑦}.

The following hold:

(1) 𝑃𝐴,𝑥 ⊂ 𝑃 is an immersed submanifold and (𝑞 B 𝑝 |𝑃𝐴,𝑥
: 𝑃𝐴,𝑥 → 𝐵, 𝑆 B 𝑅 |𝑃𝐴,𝑥×Hol𝑥 (𝐴) ) is a

Hol𝑝 (𝐴)–principal bundle—the holonomy bundle of 𝐴 based at 𝑥 .

(2) There is a unique connection ˜𝐴 ∈ A(𝑞, 𝑆) with 𝐻𝐴̃,𝑦 = 𝐻𝐴,𝑦 for every 𝑦 ∈ 𝑃𝐴,𝑥 .

(3) 𝑃𝐴,𝑥
·𝑔
−→ 𝑃𝐴,𝑥𝑔 is a isomorphism of principal bundles.

Proof. Set 𝐻 ≔ Hol𝑝 (𝐴). Define a map 𝑠 : 𝑃 → 𝐺/𝐻 as follows. For every 𝑦 ∈ 𝑃 , pick a path

𝛾 : [0, 1] → 𝐵 from 𝑝 (𝑥) to 𝑝 (𝑦). Let 𝛾 : [0, 1] → 𝑃 be a horizontal lift starting at 𝑦. Then there

is a unique 𝑔 ∈ 𝐺 such that 𝑦 = 𝛾 (1) · 𝑔. Define 𝑠 (𝑦) = 𝑔𝐻 . This defines an 𝑠 ∈ 𝑐∞(𝑃,𝐺/𝐻 ). By
Proposition 4.60 there is an associated structure reduction to 𝐻 ; indeed: the reduction is exactly

𝑃𝐴,𝑥 . This proves (1).

Suppose 𝑦 ∈ 𝑃𝐴,𝑥 and 𝑣 ∈ 𝐻𝐴,𝑦 . Let 𝛾 be a horizontal curve starting in 𝑞 with ¤𝛾 (0) = 𝑣 .

We can extend 𝛾 to a horizontal curve passing though 𝑥 for some 𝑡 < 0. This shows that

𝐻𝐴,𝑦 ⊂ 𝑇𝑦𝑃𝐴,𝑥 . Thus 𝐴 induces a connection on 𝑃𝐴,𝑥 .

The last assertion is clear. ■

Remark 4.64. 𝑃𝐴,𝑥 is the minimal reduction of 𝑃 compatible with 𝐴. ♣
Definition 4.65. 𝐴 is irreducible if 𝑃𝐴,𝑝 = 𝑃 ; otherwise it is reducible. •

4.13 Ambrose–Singer Theorem

Definition 4.66. Let (𝑝, 𝑅) be a𝐺–principal bundle. Let𝐴 ∈ A(𝑝, 𝑅). The holonomy Lie algebra
𝔥𝔬𝔩𝑥 (𝐴) based at 𝑥 ∈ 𝑃 is the Lie algebra of the Lie group Hol𝑥 (𝐴) ↬ 𝐺 . •
Theorem 4.67 (Ambrose and Singer [AS53]). The holonomy Lie algebra satisfies

𝔥𝔬𝔩𝑥 (𝐴) = ⟨{𝐹𝐴 (𝑢, 𝑣) : 𝑦 ∈ 𝑃𝐴,𝑥 , 𝑢, 𝑣 ∈ 𝑇𝑦𝑃}⟩ ⊂ 𝔤.

Proof. By Theorem 4.63, without loss of generality Hol𝑝 (𝐴) = 𝐺 and 𝑃𝐴,𝑥 = 𝑃 . Set

𝔣 ≔ ⟨{𝐹𝐴 (𝑢, 𝑣) : 𝑥 ∈ 𝑃,𝑢, 𝑣 ∈ 𝑇𝑦𝑃}⟩ ⊂ 𝔤.

Denote by 𝔣 ⊂ 𝑇𝑃 the corresponding subbundle of 𝑉𝑝 .
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By definition of curvature, [𝐻𝐴, 𝐻𝐴] ⊂ 𝔣. Because the distribution 𝐻𝐴 is 𝐺–invariant,

[𝐻𝐴, 𝔣] ⊂ 𝐻𝐴. Moreover for every 𝜉 ∈ 𝔣,

[𝐹𝐴 (𝑢, 𝑣), 𝜉] =
d

d𝑡

����
𝑡=0

Ad(exp(−𝑡𝜉))𝐹𝑝 (𝑢, 𝑣)

=
d

d𝑡

����
𝑡=0

𝐹𝐴 (d𝑅exp(𝑡𝜉 )𝑢, d𝑅exp(𝑡𝜉 )𝑣) ∈ 𝔣.

Therefore, 𝐻𝐴 ⊕ 𝔣 is involutive.

Denote by 𝑄 the maximal connected integral submanifold through 𝑥 . Since 𝑦 ∈ 𝑄 if and

only if there is a path 𝛾 from 𝑥 to 𝑦 with ¤𝛾 ∈ 𝐸, clearly 𝑃 ⊂ 𝑄 .
This proves that 𝐻𝐴 ⊕ 𝔣 = 𝑇𝑃 and consequently 𝔣 = 𝔥𝔬𝔩𝑥 (𝐴). ■

Exercise 4.68. Give an example of a connection with 𝔥𝔬𝔩𝑥 (𝐴) is not spanned by the curvature

at 𝑥 itself.

4.14 Chern–Weil theory

The following notion is very useful to distinguish 𝐺–principal bundles.

Definition 4.69. Let H
•
be a cohomology theory, e.g., H

• = H
•
dR
. A characteristic class is an

assignment of any 𝐺–principal bundle (𝑝 : 𝑃 → 𝐵, 𝑅) to a cohomology class 𝑐 (𝑝, 𝑅) ∈ H
•(𝐵)

such that if 𝑓 : 𝐴 → 𝐵, then 𝑐 (𝑓 ∗(𝑝, 𝑅)) = 𝑓 ∗𝑐 (𝑝, 𝑅). •
Remark 4.70. An excellent reference for the theory of characteristic classes is Milnor and

Stasheff [MS74]. A systematic approach uses the classifying space 𝐵𝐺 . This is a topological
space together with a𝐺–principal bundle (𝑝 : 𝐸𝐺 → 𝐵𝐺, 𝑅) such that up to isomorphism every

𝐺–principal bundle arises as 𝑓 ∗(𝑝, 𝑅) for some 𝑓 : 𝐵 → 𝐵𝐺 . This exhibits a bijection between

the set of isomorphism classes of 𝐺–princpal bundles over 𝐵 and

[𝐵, 𝐵𝐺],

the set of homotopy classes of continuous maps 𝐵 → 𝐵𝐺 . Knowing this, a characteristic class

is simply a cohomology class 𝑐 ∈ H
•(𝐵𝐺). For 𝐺 = U(1), 𝐵U(1) = C𝑃∞, 𝐸U(1) = 𝑆∞, and

𝑝 : 𝐸U(1) → 𝐵U(1) is a (version of the) Hopf fibration. Unfortunately, 𝐵𝐺 is not a (finite

dimensional) smooth manifold. 𝐵𝐺 can be approximated by smooth manifolds (or be regarded

as a smooth stack 𝐵𝐺 = [∗/𝐺]). ♣
The above approach still doesn’t give us concrete characteristic classes.

8

Let 𝑉 be a vector space. A polynomial of degree 𝑘 is a linear map 𝑝 ∈ Hom(𝑆𝑘𝑉 ,R). Here
𝑆𝑘𝑉 denotes the 𝑘–th symmetric product. If 𝑉 = R𝑛 , then

𝑒
𝑘1

1
⊙ · · · ⊙ 𝑒𝑘𝑛𝑛

68



with

∑
𝑘𝑖 = 𝑘 form a basis of 𝑆𝑘𝑉 . This gives us a polynomial 𝑃 ∈ R[𝑥1, . . . , 𝑥𝑘 ] of degree 𝑘 by

𝑃 ≔
∑︁

𝑘1+...+𝑘𝑛=𝑘
𝑝 (𝑒𝑘1

1
⊙ · · · ⊙ 𝑒𝑘𝑛𝑛 ) · 𝑥𝑘1

1
· · · 𝑥𝑘𝑛𝑛 .

A formal power series on 𝑉 is an element of

Hom(𝑆•𝑉 ,R) = Hom(
∞⊕
𝑘=0

𝑆𝑘𝑉 ,R) =
∞∏
𝑘=0

Hom(𝑆𝑘𝑉 ,R) .

If 𝑉 = 𝔤 ≔ Lie(𝐺), then 𝐺 acts on Hom(𝑆•𝔤,R) via 𝑔 ↦→ 𝑆• Ad𝑔. Denote the Ad–invariant
formal power series by

Hom(𝑆•𝔤,R)Ad.

(This space is very computable using Lie theory, as we will see concretely later.)

Example 4.71. If 𝔤 = 𝔲(𝑛), then 𝑝 (𝐴) = tr(𝐴), 𝑞(𝐴, 𝐵) = tr(𝐴𝐵), 𝑟 (𝐴, 𝐵,𝐶) = tr(𝐴𝐵𝐶 + 𝐵𝐴𝐶 +
𝐴𝐶𝐵) are Ad–invariant polynomials of degree 1, 2, 3. ♠

Let 𝑠𝑘 ∈ Hom(𝑆𝑘𝔤,R)Ad
. Let (𝑝 : 𝑃 → 𝐵, 𝑅) be a 𝐺–principal bundle. Let 𝐴 ∈ A(𝑝, 𝑅).

Since 𝐹𝐴 ∈ Ω2

hor
(𝑃, 𝔤)Ad

,

𝐹∧𝑘𝐴 ≔ 𝐹𝐴 ∧ . . . ∧ 𝐹𝐴︸          ︷︷          ︸
𝑘 times

∈ Ω2𝑘
hor

(𝑃, 𝑆𝑘𝔤)Ad

and

𝑠𝑘 (𝐹∧𝑘𝐴 ) ∈ Ω2𝑘
hor

(𝑃)𝐺 .

Since the latter is horizontal and 𝐺–invariant, there is a unique

­

𝑠𝑘 (𝐹∧𝑘𝐴 ) ∈ Ω2𝑘 (𝐵) with 𝑝∗ [ ­

𝑠𝑘 (𝐹∧𝑘𝐴 )] = 𝑠𝑘 (𝐹∧𝑘𝐴 ) .

q− is the inverse of the map −̂ from Proposition 4.47 corresponding to the trivial representation

of 𝐺 on R. Observe that, on Ω•
hor

(𝑃)𝐺 , d𝐴 = d.

Theorem 4.72 (The Chern–Weil construction). Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ⟲ 𝐺) be a 𝐺–principal
bundle. Let 𝑠 ∈ Hom(𝑆•𝔤,R).

(1) Let 𝐴 ∈ A(𝑝, 𝑅). The differential form

CW𝐴 (𝑠) ≔ ­𝑠 (𝐹∧•
𝐴
) ∈ Ω•(𝐵)

is closed.

(2) The de Rham cohomology class

CW𝑝,𝑅 (𝑠) ≔ [CW𝐴 (𝑠)] ∈ H
•
dR
(𝐵)

is independent of 𝐴 ∈ A(𝑝, 𝑅).

69



(3) The map CW𝑝,𝑅 : Hom(𝑆•𝔤,R) → H
•
dR
(𝐵) is an R–algebra homomorphism, the Chern–

Weil homomorphism.

(4) If 𝑓 : 𝐶 → 𝐵 is smooth, then

CW𝑓 ∗ (𝑝,𝑅) (𝑠) = 𝑓 ∗CW𝑝,𝑅 (𝑠).

Proof of Theorem 4.72. Suppose that 𝑠 ∈ Hom(𝑆𝑘𝔤,R). To prove (1), use the Bianchi identity and
to compute

d𝐴𝑠 (𝐹∧𝑘𝐴 ) = 𝑠 (d𝐴 (𝐹𝑘𝐴)) = 0.

To prove (2), set

𝑎 ≔ 𝐴1 −𝐴0 ∈ Ω1

hor
(𝑃, 𝔤) and 𝐴𝑡 ≔ 𝐴0 + 𝑡𝑎.

Since

d

d𝑡
𝐹𝐴𝑡

= d𝐴𝑡
𝑎

and using the

𝑠 (𝐹∧𝑘𝐴1

) − 𝑠 (𝐹∧𝑘𝐴0

) =
ˆ

1

0

d

d𝑡
𝑠 (𝐹∧𝑘𝐴𝑡

) d𝑡

= 𝑘

ˆ
1

0

𝑠 (d𝐴𝑡
𝑎 ∧ 𝐹∧𝑘−1

𝐴𝑡
) d𝑡

= d𝜏 (𝐴0, 𝐴1)

with

𝜏 (𝐴0, 𝐴1) ≔ 𝑘

ˆ
1

0

𝑠 (𝑎 ∧ 𝐹∧𝑘−1

𝐴𝑡
) d𝑡 .

Assertions (4) and (3) are obvious. ■

The following theorem asserts that the Chern–Weil homomorphism constructs all charac-

teristic classes (up to torsion).

Theorem 4.73. Hom(𝑆𝑘𝔤,R)Ad = H
𝑘 (𝐵𝐺,R).

Sadly, the proof is outside of the scope of this course.

8

Let us consider the case 𝐺 = GL𝑛 (C). For convenience of notation we use the obvious

adaptation of the Chern–Weil homomorphism to C (instead of R).
Proposition 4.74. The restriction

resΔ : HomC(𝑆•𝔤𝔩𝑛 (C),C)Ad → C[[𝑥1, . . . , 𝑥𝑛]]𝑆𝑛

to diagonal matrices in 𝔲(𝑛), is an isomorphism.
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Proof. Diagonalizable matrices are dense in 𝔤𝔩(C𝑛), Therefore, any 𝑠 ∈ Hom(𝑆•𝔤𝔩𝑛 (C),C)GL𝑛 (R)

is determined by its values on diagonal matrices. The space of diagonal matrices is C𝑛 and the

stabiliser of this subspace is 𝑆𝑛 ⊂ GL(C𝑛). ■

Remark 4.75. This is a special case of Chevalley’s restriction theorem: If𝐺 is a complex connected

semi-simple Lie group, 𝔱 ⊂ 𝔤 is a Cartan subalgebra and𝑊 is the Weyl group, then

res : Hom(𝑆•𝔤,C)Ad → Hom(𝑆•𝔱,C)𝑊

is an isomorphism.

This is also the algebraic incarnation of what is sometimes called the splitting lemma. ♣
For 𝑋 ∈ 𝔤𝔩𝑛 (C) consider the characteristic polynomial

det

(
1 + 𝜆 𝑖𝑋

2𝜋

)
=

𝑛∑︁
𝑘=0

𝑝𝑘 (𝑋 )𝜆𝑘 .

Clearly, 𝑠𝑘 ∈ Hom(𝑆𝑘𝔤𝔩𝑛 (C),R)Ad
. In terms of Proposition 4.74 we have

resΔ (𝑠𝑘 ) =
(
𝑖

2𝜋

)𝑘 ∑︁
1⩽𝑖1<...<𝑖𝑘⩽𝑛

𝑥𝑖1 · · · 𝑥𝑖𝑘 .

Up to the prefactor these are the elementary symmetric polynomials of degree 𝑘 in 𝑛–variables.

It is not too difficult to see that these generate C[[𝑥1, . . . , 𝑥𝑛]]𝑆𝑛 .
Definition 4.76. The 𝑘–th Chern class of 𝑃 is the characteristic class defined by

𝑐𝑘 (𝑝, 𝑅) ≔ CW𝑝,𝑅 (𝑠𝑘 ) ∈ 𝐻 2𝑘
dR
(𝐵;C)

The total Chern class is

𝑐 (𝑝, 𝑅) ≔
∞∑︁
𝑘=0

𝑐𝑘 (𝑝, 𝑅) .

If 𝐸 is a complex vector bundle of rank 𝑛, we also call the Chern classes of FrGL𝑛 (C) (𝐸) the
Chern classes of 𝐸. •
Exercise 4.77. Write a explicit formulae for 𝑐0(𝑝, 𝑅), 𝑐1(𝑝, 𝑅) and 𝑐2(𝑝, 𝑅) in terms of a connection

on (𝑝, 𝑅).
Exercise 4.78. Compute 𝑐 (𝑇C𝑃1).
Remark 4.79. The normalization

𝑖
2𝜋

might seem strange at this point. It ensures that 𝑐𝑘 (𝑃) is
integral, i.e.,

𝑐𝑘 (𝑝, 𝑅) ∈ im(H2𝑘 (𝐵;Z) → H
2𝑘 (𝐵;C))

and also is needed to make 𝑐𝑘 agree with other definitions of the Chern class. ♣
Exercise 4.80. Prove that if 𝐸 is a complex rank 𝑟 vector bundles, then 𝑐𝑘 (𝐸) = 0 for 𝑘 > 𝑟 .

Exercise 4.81. Prove that 𝐸1 and 𝐸2 are complex vector bundles, then

𝑐 (𝐸1 ⊕ 𝐸2) = 𝑐 (𝐸1) ∪ 𝑐 (𝐸2) .
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For 𝑋 ∈ 𝔤𝔩𝑛 (C) consider

tr exp

(
𝜆
𝑖𝑋

2𝜋

)
=

∞∑︁
𝜆=1

𝑡𝑘 (𝑋 )𝜆𝑘 .

In terms of Proposition 4.74 we have

resΔ (𝑡𝑘 ) =
(
𝑖

2𝜋

)𝑘 𝑛∑︁
𝑖=1

𝑥𝑘𝑖

𝑘!

.

These too, like the 𝑠𝑘 , generate all of Hom(𝑆•𝔤𝔩𝑛 (C),C)Ad
. Expressions of the form

∑𝑛
𝑖=1
𝑥𝑘𝑖 are

called power sums.
Definition 4.82. The 𝑘–th Chern character of 𝑃 is the characteristic class defined by

ch𝑘 (𝑝, 𝑅) ≔ CW𝑝,𝑅 (𝑡𝑘 ) ∈ H
2𝑘
dR
(𝑀 ;C)

The total Chern character is

ch(𝑃) ≔
∞∑︁
𝑘=0

ch𝑘 (𝑝, 𝑅) .

If 𝐸 is a complex vector bundle, then we also call the Chern characters of FrGL𝑛 (C) (𝐸) the Chern
characters of 𝐸. •
Exercise 4.83. Show that

ch(𝐸1 ⊕ 𝐸2) = ch(𝐸1) + ch(𝐸2)

and

ch(𝐸1 ⊗ 𝐸2) = ch(𝐸1) ∪ ch(𝐸2) .

Since both the 𝑝𝑘 and the 𝑞𝑘 generate C[𝔤]𝐺 , it follows from Proposition 4.74 that the 𝑐𝑘
can be expressed as a function of the 𝑐ℎ𝑘 . The following formulae are used often.

Proposition 4.84. If 𝐸 is a complex vector bundle, then

ch1(𝐸) = 𝑐1(𝐸),

ch2(𝐸) =
1

2

(𝑐1(𝐸)2 − 2𝑐2(𝐸)) and

ch3(𝐸) =
1

6

(𝑐1(𝐸)3 − 3𝑐1(𝐸)𝑐2(𝐸) + 3𝑐3(𝐸)) .

Proof. The first is obvious since 𝑝1 = 𝑞1. For the second note that

𝑛∑︁
𝑖=1

𝑥2

𝑖 =

(
𝑛∑︁
𝑖=1

𝑥𝑖

)
2

− 2

∑︁
1⩽𝑖< 𝑗⩽𝑛

𝑥𝑖𝑥 𝑗 .

I leave the last identity as an exercise. ■

Remark 4.85. Underlying the above proposition are certain combinatorial identities know as

the Newton identities. ♣
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8

Complexification induces an inclusion

𝜄 : GL𝑛 (R) ↩→ GL𝑛 (C)

Therefore, the characteristic classes for GL𝑛 (C) induce characteristic classes for GL𝑛 (R):

Hom(𝑆•𝔤𝔩𝑛 (C),C)Ad
𝜄∗−→ Hom(𝑆•𝔤𝔩𝑛 (R),C)Ad.

Definition 4.86. The 𝑘–th Pontryagin class of a real vector bundle 𝐸 → 𝐵 is

𝑝𝑘 (𝐸) = (−1)𝑘𝑐2𝑘 (𝐸 ⊗R C) ∈ H
4𝑘
dR
(𝐵;C) . •

Exercise 4.87. Show that 𝑐2𝑘+1(𝐸 ⊗R C) = 0.

Exercise 4.88. Suppose 𝐵 is a Riemannian closed 4–manifold. Let 𝐺 be a semi-simple Lie group

and 𝑃 a principal 𝐺–bundle. Then minus the Killing form is a metric on 𝔤𝑃 ≔ 𝑃 ×Ad 𝔤. Show

that there are constants 𝑐1 > 0 and 𝑐2 ∈ R such that for any 𝐴 ∈ A(𝑃)

YM(𝐴) = 𝑐1

ˆ
𝑋

|𝐹𝐴 + ∗𝐹𝐴 |2 + 𝑐2

ˆ
𝑋

𝑝1(𝔤𝑃 ) .

Since the second term on the right-hand side depends only on 𝑃 , this shows, in particular, that

anti-self-dual instantons are absolute minima of YM (and not just critical points).

Finally, let me introduce the Euler class. This requires some linear algebra.

Proposition 4.89. If 𝑋 ∈ 𝔬(2𝑛), then there exists a 𝑔 ∈ SO(2𝑛) such that 𝑔𝑋𝑔−1 is block diagonal
with blocks of the form (

0 𝜆𝑖
−𝜆𝑖 0

)
The stabilizer of the space of block diagonal matrices is 𝑆𝑛 .

Remark 4.90. If 𝑋 ∈ 𝔬(2𝑚 + 1), an analogous result holds but one needs to allow for one block

of the form (0). ♣
Definition 4.91. The Pfaffian is a SO(2𝑛)–invariant degree 𝑛 polynomial on 𝔬(2𝑛) defined by

Pf (𝐴) =
𝑛∏
𝑖=1

𝜆𝑖 . •

Remark 4.92. It is clear from the definition that Pf (𝐴)2 = det(𝐴); ♣
Exercise 4.93. If 𝑋 ∈ 𝔬(2𝑚) and 𝜔 ≔

∑
𝑖< 𝑗 𝑋𝑖 𝑗𝑒𝑖 ∧ 𝑒 𝑗 , then

Pf (𝑋 ) · 𝑒1 ∧ · · · ∧ 𝑒2𝑛 =
𝜔𝑛

𝑛!

.

73



Definition 4.94. If (𝑝, 𝑅) is a principal SO(2𝑚)–bundle, then its Euler class is

𝑒 (𝑝, 𝑅) ≔ CW𝑝,𝑅

(
Pf

(2𝜋)𝑛

)
.

Define the Euler class of an oriented (Euclidean) vector bundle of rank 2𝑚 by as the Euler class

of its SO(2𝑚) frame bundle. •
Remark 4.95. Here is a warning: the Pfaffian really is attached to SO(2𝑚) and not GL

+(2𝑚).
Therefore, a GL

+(2𝑚)–principal bundle might very well admit a flat connection, but a reduction

of structure group to SO(2𝑚) does not have a trivial Euler class! ♣
Exercise 4.96. If (𝑝 : 𝑃 → 𝐵, 𝑅) is a U(𝑛)–principal bundle and (𝑞 : 𝑄 ≔ 𝑃 ×U(𝑛) SO(2𝑛), 𝑆) is
its associated SO(2𝑛)–principal bundle, then

𝑒 (𝑞, 𝑆) = 𝑐𝑛 (𝑝, 𝑅) .

Example 4.97. Let (Σ, 𝑔) be an Riemann surface. If (𝑒1, 𝑒2) is a local orthonormal frame and

(𝑒1, 𝑒2) is the dual coframe, then 𝑅𝑔 is of the form

𝑅𝑔 = 𝐾𝑔 ·
(

0 1

−1 0

)
⊗ 𝑒1 ∧ 𝑒2

for some function 𝐾𝑔. A moments thought shows that 𝐾𝑔 does not depend on the choice of local

frame and, hence, defines a function 𝐾𝑔 ∈ 𝐶∞(𝑀). 𝐾𝑔 is called the Gauss curvature of 𝑔. In an

arbitrary basis (𝑒1, 𝑒2) we have

𝐾𝑔 ≔ −
⟨𝑅𝑔 (𝑒1, 𝑒2)𝑒1, 𝑒2⟩

|𝑒1 |2 |𝑒2 |2 − ⟨𝑒1, 𝑒2⟩2
.

If Σ is oriented, then we can define 𝑒 (𝑇Σ) and the above shows that

𝑒 (𝑇Σ) = 1

2𝜋
[𝐾𝑔 · vol𝑔] . ♠

See my Riemannian geometry notes from 2021 for a discussion of the Chern–Gauß–Bonnet

theorem.

4.15 𝐺–structures on smooth manifolds

Definition 4.98. Let 𝜌 : 𝐺 → GL𝑛 (R) be a Lie group homomorphism Let𝑋 be a smooth manifold

of dimension 𝑛. A 𝐺–structure on 𝑋 is a 𝜌 reduction of Fr(𝑇𝑋 ); that is: a 𝐺–principal bundle
(𝑝 : 𝑃 → 𝑋, 𝑅) together with an isomorphism

𝑃 ×𝜌 GL𝑛 (R) � Fr(𝑇𝑋 ) .

•
Example 4.99. A GL

+
𝑛 (R)–structure on 𝑋 is equivalent to an orientation of 𝑋 . ♠

Example 4.100. An O(𝑛)–structure on 𝑋 is equivalent to a Riemannian metric on 𝑋 . ♠
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Example 4.101. An GL𝑛/2(C)–structure on 𝑋 is equivalent to an almost complex structure. ♠
Example 4.102. An U(𝑛/2)–structure on 𝑋 is equivalent to an almost Hermitian structure. ♠
Example 4.103. For 𝑛 ⩾ 3, 𝜋1(SO(𝑛), 1) � Z/2Z. The universal cover of SO(𝑛) is a Lie group,
Spin(𝑛), and comes with the covering map is a Lie group homomorphism: 𝜌 : Spin(𝑛) → SO(𝑛).
A spin structure on a Riemannian manifold (𝑋,𝑔) is a 𝜌–reduction of FrSO(𝑇𝑋,𝑔). The above
description of Spin(𝑛), unfortunately, is not that useful. Spin(𝑛) has more representations than

SO(𝑛) and to understand those one needs (either) a more concrete description of Spin(𝑛) (or
some knowledge of Lie theory). We will learn more about spin geometry in the context of

Seiberg–Witten theory. ♠
For an affine connection, that is: a covariant derivative ∇ on𝑇𝑋 , there is a notion of torsion

𝑇∇ ∈ Ω2(𝑋,𝑇𝑋 ) defined by

𝑇∇ (𝑣,𝑤) ≔ ∇𝑣𝑤 − ∇𝑤𝑣 − [𝑣,𝑤]

for 𝑣,𝑤 ∈ Vect(𝑋 ). In the context of 𝐺–structures this can be formulated using the solder form.

Definition 4.104. Let (𝑝 : 𝑃 → 𝑋, 𝑅) be a 𝐺–principal bundle. Let 𝜌 : 𝐺 → GL(𝑉 ) be a finite-
dimensional representation. A (𝜌–)solder form 𝜎 on (𝑝, 𝑅) is a horizontal𝐺–equivariant 1–form

𝜎 ∈ Ω1

hor
(𝑃,𝑉 )𝜌

such that the map 𝑇𝑋 → 𝑃 ×𝜌 𝑉 , defined by

(𝑝 (𝑥), 𝑣) ↦→ [𝑥, 𝜎 (𝑣)]

with 𝑣 denoting any lift of 𝑣 , is an isomorphism. •
Example 4.105. Let (𝑝 : Fr(𝑇𝑋 ) → 𝑋, 𝑅) be the frame bundle of𝑇𝑋 . The canonical solder form

𝜎 on (𝑝, 𝑅) is defined as follows. For 𝑥 ∈ 𝑋 and 𝜙 : R𝑛 → 𝑇𝑥𝑋 a frame define

𝜎 (𝑥,𝜙 ) (𝑣) ≔ 𝜙−1 ◦𝑇(𝑥,𝜙 )𝑝 (𝑣) .

By restriction this induces a solder form for every 𝐺–structure on 𝑋 . ♠
Remark 4.106. If (𝑝, 𝑅) admits a solder form 𝜎 , then that induces an isomorphism 𝑃 ×𝐺 GL(𝑉 ) �
Fr(𝑇𝑋 ) such that 𝜎 is the restriction of the canonical solder form. Therefore, it is convenient to

regard a 𝐺–structure as a 𝐺–principal bundle (𝑝, 𝑅) together with a solder form. ♣
Proposition 4.107. Let 𝐴 be a GL𝑛 (R)–principal connection on (𝑝 : Fr(𝑇𝑋 ) → 𝑋, 𝑅). Denote by
∇ the corresponding affine connection. Denote by 𝜎 the canonical solder form. The isomorphism
Ω2(𝑋,𝑇𝑋 ) � Ω2

hor
(Fr(𝑇𝑋 ),R𝑛)GL𝑛 (R) maps the torsion 𝑇∇ of ∇ to

d𝐴𝜎 = d𝜎 + [𝐴 ∧ 𝜎] .

Proof. Let 𝑣,𝑤 ∈ Vect(𝑋 ). Let

𝑣, 𝑤̂ ∈ 𝐶∞(Fr(𝑇𝑋 ),R𝑛)GL𝑛 (R)
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be the lifts to maps. Denote by 𝑣, 𝑤̃ ∈ Vect(𝑃) (arbitrary) lifts to vector fields. The solder form

relates these by

𝜎 (𝑣) = 𝑣 and 𝜎 (𝑤̃) = 𝑤̂ .
According to Proposition 4.47, ∇𝑣,∇𝑤 ∈ Ω1(𝑋,𝑇𝑋 ) lift to

d𝐴𝑣, d𝐴𝑤̂ ∈ Ω1

hor
(Fr(𝑇𝑋 ),R𝑛)GL𝑛 (R) .

Therefore, 𝑇∇ (𝑣,𝑤) lifts to

d𝐴𝑣 (𝑤̃) − d𝐴𝑤̂ (𝑣) − 𝜎 ( [𝑣, 𝑤̃]) ∈ 𝐶∞(Fr(𝑇𝑋 ),R𝑛)GL𝑛 (R) .

This is precisely (d𝐴𝜎) (𝑣, 𝑤̃). ■

Remark 4.108. The equation d𝐴𝜎 = d𝜎 + [𝐴 ∧ 𝜎] is sometimes called Cartan’s first structure
equation. Cartan’s second structure equation is 𝐹𝐴 = d𝐴 + 1

2
[𝐴 ∧𝐴].

If you read these phrases anywhere, then typically the solder form is called a co-frame

and written as in components: 𝜎 = (𝜔𝑖). Similarly, the connection 𝐴 is written in components

𝐴 = (𝜃 𝑖𝑗 ). The first structure equation then takes the form

d𝜔𝑖 = −𝜃 𝑖𝑗 ∧ 𝜔 𝑗 +
1

2

𝑇 𝑖
𝑗𝑘
𝜔 𝑗 ∧ 𝜔𝑘

with 𝑇 𝑖
𝑗𝑘
denoting the torsion. The second structure equation becomes

d𝜃 𝑖𝑗 = −𝜃 𝑖
𝑘
∧ 𝜃𝑘𝑗 +

1

2

𝑅𝑖
𝑗𝑘ℓ
𝜔𝑘 ∧ 𝜔 ℓ .

(Throughout, Einstein’s summation convention is assumed.) If you squint your eyes, this looks

like the “usual coordinate” expressions. ♣
We know that 𝑋 always admits a torsion-free affine connection, even one compatible with

a choice of Riemannian metric, i.e. a O(𝑛)–structure. What about other 𝐺–structures?

Definition 4.109. Let (𝑝, 𝑅) be 𝐺–principal bundle on 𝑋 together with a solder form 𝜎 . Let

𝐴 ∈ A(𝑝, 𝑅). The torsion of 𝐴 is d𝐴𝜎 . If 𝐴
′
is another 𝐺–principal connection, then 𝐴′ = 𝐴 + 𝑎

with 𝑎 ∈ Ω1

hor
(𝑃, 𝔤)Ad

and

d𝐴′𝜎 = d𝐴𝜎 + 𝜌 (𝑎) ∧ 𝜎.
The intrinsic torsion of (𝑝, 𝑅;𝜎) is defined by

𝑇 (𝑝, 𝑅;𝜎) ≔ [d𝐴𝜎] ∈ coker

[
𝜌 (−) ∧ 𝜎 : Ω1

hor
(𝑃, 𝔤)Ad → Ω2

hor
(𝑃,𝑉 )𝜌

]
.

If 𝑇 (𝑝, 𝑅;𝜎) = 0, then (𝑝, 𝑅;𝜎) is torsion-free. •
Obviously:

Proposition 4.110. (𝑝, 𝑅) admits a torsion-free connection if and only if the intrinsic torsion
vanishes. Moreover, in this case, the space of torsion-free connection is an affine space modelled on

ker

[
𝜌 (−) ∧ 𝜎 : Ω1

hor
(𝑃, 𝔤)Ad → Ω2

hor
(𝑃,𝑉 )𝜌

]
.

■
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Exercise 4.111. Prove that the map

𝜌 (−) ∧ 𝜎 : Ω1

hor
(𝑃,𝔬(𝑛))Ad → Ω2

hor
(𝑃,R𝑛)O(𝑛)

is an isomorphism. (This algebraic fact implies the fundamental theorem of Riemannian geome-

try: the existence and uniqueness of the Levi–Civita connection.)

Exercise 4.112. Let𝑋 be a smoothmanifold of dimension 2𝑛. Let 𝐼 be an almost complex structure

on 𝑇𝑋 . Prove that the corresponding GL𝑛 (C)–structure has vanishing intrinsic torsion if and

only if the Nijenhuis tensor 𝑁𝐼 vanishes.

Remark 4.113. It is an interesting and complicated problem to determine for which subgroup𝐺 <

O(𝑛) irreducible torsion-free𝐺–structures exists. The irreducibility condition is important, since

flat manifolds exist. By the Ambrose–Singer theorem, it amounts to ensuring that Hol(𝐴) = 𝐺 .
This question has been solved by Berger [Ber55]. ♣

5 Aspects of Yang–Mills theory

5.1 The Yang–Mills functional

Let (𝑋,𝑔) be an oriented pseudo-Riemannian manifold. Let 𝐺 be a Lie group. Set 𝔤 ≔ Lie(𝐺)
Definition 5.1. Let (𝑝 : 𝑃 → 𝑋, 𝑅) be a𝐺–principal bundle. The adjoint bundle associated with

(𝑝, 𝑅) is the vector bundle
Ad(𝑃) ≔ 𝑃 ×Ad 𝔤 → 𝑋 . •

Ad(𝑃) plays an important role because

Ω𝑘
hor

(𝑃, 𝔤)Ad � Ω𝑘 (𝑋,Ad(𝑃)) .

Therefore, A(𝑝, 𝑅) can be regarded as an affine spaces modelled on Ω1(𝑋,Ad(𝑃)), and the

curvature 𝐹𝐴 of a connection 𝐴 can and (mostly) will be regarded as an Ad(𝑃)–valued 2–form.

Every Ad–invariant bilinear form 𝐵 ∈ Hom(𝑆2𝔤,R)Ad
induces a bilinear form on Ad(𝑃). If

𝐺 is a matrix group; that is: 𝐺 < GL𝑛 (R), then a natural choice is

𝐵(𝜉, 𝜂) ≔ tr(𝜉𝜂) .

In fact, there always is a canonical choice.

Definition 5.2. The Killing form is the Ad–invariant bilinear form 𝐵 ∈ Hom(𝑆2𝔤,R)Ad
defined

by

𝐵(𝜉, 𝜂) ≔ tr(ad(𝜉) ◦ ad(𝜂)) . •

Choose a 𝐵 ∈ Hom(𝑆2𝔤,R)Ad
. Define

|𝐹𝐴 |2 ∈ 𝐶∞(𝑋,R)

using 𝐵 and the pseudo-Riemannian metric 𝑔.
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Definition 5.3. The Yang–Mills functional YM : A(𝑝, 𝑅) → R is defined by

YM(𝐴) ≔ 1

2

ˆ
𝑋

|𝐹𝐴 |2 vol𝑔 . •

If 𝑢 ∈ G(𝑝, 𝑅), then
YM(𝑢∗𝐴) = YM(𝐴) .

(Prove this!) Therefore, YM descends to a map

YM : A(𝑝, 𝑅)/G(𝑝, 𝑅) → R.

The Yang–Mills functional should be regarded as an energy functional. (At this stage, despite

the notation, |𝐹𝐴 |2 need not be non-negative. This should not deter us.)

Suppose that 𝐵 is non-degenerate. The covariant derivative

d𝐴 : Ω•(𝑋,Ad(𝑃)) → Ω•+1(𝑋,Ad(𝑃))

has a formal adjoint

d
∗
𝐴 : Ω•(𝑋,Ad(𝑃)) → Ω•−1(𝑋,Ad(𝑃))

with respect to 𝐵 and 𝑔.

Proposition 5.4. For 𝐴 ∈ A(𝑝, 𝑅) and 𝑎 ∈ Ω1(𝑋,Ad(𝑃))

d

d𝑡

����
𝑡=0

YM(𝐴 + 𝑡𝑎) =
ˆ
𝑋

⟨d∗𝐴𝐹𝐴, 𝑎⟩ vol𝑔

Proof. This is a consequence of

𝐹𝐴+𝑡𝑎 = 𝐹𝐴 + 𝑡d𝐴𝑎 +
1

2

𝑡2 [𝑎 ∧ 𝑎] .

Indeed,

YM(𝐴 + 𝑡𝑎) = 1

2

ˆ
𝑋

|𝐹𝐴 + 𝑡d𝐴𝑎 |2 vol𝑔 +𝑂 (𝑡2)

= YM(𝐴) + 𝑡
ˆ
𝑋

⟨𝐹𝐴, d𝐴𝑎⟩ vol𝑔 +𝑂 (𝑡2)

= YM(𝐴) + 𝑡
ˆ
𝑋

⟨d∗𝐴𝐹𝐴, 𝑎⟩ vol𝑔 +𝑂 (𝑡2) . ■

Definition 5.5. The Yang–Mills equation is

d
∗
𝐴𝐹𝐴 = 0. •

Remark 5.6. The Yang–Mills equation should be understood as a second order equation on the

connection 𝐴. ♣
The Yang–Mills equation stands at the interface of physics and geometry, similar to (the

vacuum) Einstein equations. Mysteriously, its study has had remarkable impact on mathematics:

ranging across representation theory, algebraic geometry, partial differential equations, and

topology.
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5.2 Maxwell’s equations

Maxwell’s equations (without charges and currents) governing electro-magnetism are an in-

stance of the Yang–Mills equation. In Maxwell’s theory, there are two fields: the electric field

𝐸 = (𝐸1, 𝐸2, 𝐸3) and the magnetic field 𝐵 = (𝐵1, 𝐵2, 𝐵3) satisfying

∇ · 𝐵 = 0, ∇ × 𝐸 + 𝜕𝑡𝐵 = 0, ∇ · 𝐸 = 0, and ∇ × 𝐵 − 𝜕𝑡𝐸 = 0.

In the presence of charges and currents, the last two equations are modified. The first two

equations imply that there are 𝜙 , the electric potential, andA = (𝐴1, 𝐴2, 𝐴3), the vector potential,
such that

𝐸 = ∇𝜙 − 𝜕𝑡A and 𝐵 = ∇ × A.

Of course, A and 𝜙 are not uniquely determined by 𝐸 and 𝐵.

It is convenient to package A and 𝜙 together as

𝐴 ≔ 𝑖

3∑︁
𝑎=1

𝐴𝑎d𝑥𝑎 + 𝜙d𝑡 ∈ Ω1(R4, 𝔲(1)) .

This can be regarded as a U(1)–principal connection on the trivial U(1)–principal bundle over
R4

. Its curvature is

𝐹𝐴 = d𝐴 =
𝑖

2

3∑︁
𝑎,𝑏=1

(𝜕𝑎𝐴𝑏 − 𝜕𝑏𝐴𝑎︸         ︷︷         ︸
𝐵𝑐

) d𝑥𝑎 ∧ d𝑥𝑏 + 𝑖
3∑︁
𝑎=1

(𝜕𝑎𝜙 − 𝜕𝑡𝐴𝑎︸       ︷︷       ︸
𝐸𝑎

) d𝑥𝑎 ∧ d𝑡 .

The Bianchi equation d𝐴𝐹𝐴 = 0 encodes precisely the first two of Maxwell’s equations. The

ambiguity in choosing A and 𝜙 corresponds the possibly gauge transformations 𝑢∗𝐴 of 𝐴 which

(because U(1) is abelian) have the same curvature 𝐹𝑢∗𝐴 = 𝐹𝐴.

To obtain the last two of Maxwell’s equations, equip R4
with the Minkowski metric

𝑔 = d𝑥1 ⊙ d𝑥1 + d𝑥2 ⊙ d𝑥2 + d𝑥3 ⊙ d𝑥3 − d𝑡 ⊙ d𝑡 .

Denote by 𝜀𝑎𝑏𝑐 the Levi–Civita symbol. A brief computation reveals that

d
∗
𝐴𝐹𝐴 = 𝑖 (𝜕2𝐵3 − 𝜕3𝐵2 − 𝜕𝑡𝐸1)d𝑥1 + 𝑖 (𝜕3𝐵1 − 𝜕1𝐵3 − 𝜕𝑡𝐸2)d𝑥2

+ 𝑖 (𝜕1𝐵2 − 𝜕2𝐵1 − 𝜕𝑡𝐸3)d𝑥3 − 𝑖
3∑︁
𝑎=1

𝜕𝑎𝐸𝑎 d𝑡 .

Therefore, d
∗
𝐴
𝐹𝐴 = 0 is equivalent to the last two of Maxwell’s equations.

5.3 Anti-self-duality

Let (𝑋,𝑔) be an oriented Riemannian manifold. Let 𝐵 be an Euclidean inner product on 𝔤.

Flat connections trivially satisfy the Yang–Mills equation. Indeed, they are absolute minima

of the Yang–Mills functional. Moreover, the condition to be flat is a first order equation on the
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metric, while the Yang–Mills equation is a second order equation. Chern–Weil theory gives rise

to numerous obstructions for 𝐺–principal bundles to admit flat connections.

Suppose that

dim𝑋 = 4.

The miracle of anti-self-duality appears:

∗ : Ω2(𝑋 ) → Ω2(𝑋 ) and ∗ ∗ = id.

Therefore, ∗ has two eigenvalues +1 and −1. By the Bianchi identity,

∗𝐹𝐴 = ±𝐹𝐴 =⇒ d
∗
𝐴𝐹𝐴 = 0.

Definition 5.7. A connection 𝐴 ∈ A(𝑝, 𝑅) is anti-self-dual (ASD) if

∗𝐹𝐴 = −𝐹𝐴 . •

Remark 5.8. Initially, whether one studies the anti-self-duality equation ∗𝐹𝐴 = −𝐹𝐴 or the

(possibly more natural seeming) self-duality equation ∗𝐹𝐴 = 𝐹𝐴 seems to not matter. After all,

one is free to flip the orientation on 𝑋 and that exchanges these notions. It turns out, however,

that for Kähler 4–manifolds, the complex structure selects a preferred orientation and for that

orientation the anti-self-duality equation interacts well with the theory of holomorphic vector

bundles. ♣
Remark 5.9. There are versions of anti-self-duality in higher dimension, but these all require 𝑋

to have special geometry; e.g., it must be Kähler manifold, a𝐺2–manifold, or a Spin(7)–manifold,

etc. ♣
Example 5.10. Flat connections are ASD. ♠
Example 5.11. If 𝐺 = U(1), then 𝐹𝐴 ∈ Ω2(𝑋, 𝑖R). By the Bianchi identity, d𝐹𝐴 = d𝐴𝐹𝐴 = 0.

Therefore [𝐹𝐴] ∈ H
2

dR
(𝑋, 𝑖R). If [Ω] ∈ im(H2(𝑋,Z) → H

2

dR
(𝑋,R)), then there always is a U(1)–

principal bundle with a connection 𝐴 such that 𝐹𝐴 = −2𝜋𝑖Ω. Therefore, U(1) ASD connections

(up to gauge transformations) are essentially classified by the anti-self-dual harmonic 2–forms

in im(H2(𝑋,Z) → H
2

dR
(𝑋,R) �H2(𝑋,𝑔)) ♠

Proposition 5.12. Suppose that𝐺 is semi-simple and −𝐵 is the Killing form. For every𝐴 ∈ A(𝑝, 𝑅)

YM(𝐴) = ∓4𝜋2

ˆ
𝑋

𝑝1(Ad(𝑃)) + 1

4

ˆ
𝑋

|𝐹𝐴 ± ∗𝐹𝐴 |2 vol𝑔

In particular, (anti-)self-dual connections are absolute minima of the Yang–Mills functional.

Proof. By definition,

𝑝1(Ad(𝑃)) = −𝑐2(Ad(𝑃) ⊗ C).

Since

𝑐2 = −ch2 +
1

2

ch
2

1
, ch𝑘 (Ad(𝑃) ⊗ C) =

[
tr

1

𝑘!

(
𝑖

2𝜋
ad ◦𝐹𝐴

)∧𝑘 ]
,
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and tr vanishes on 𝔬(𝑛),

𝑝1(Ad(𝑃)) = − 1

8𝜋2
[tr(ad ◦𝐹𝐴 ∧ ad ◦𝐹𝐴)]

=
1

8𝜋2
⟨𝐹𝐴 ∧ 𝐹𝐴⟩.

Therefore,

1

4

ˆ
𝑋

|𝐹𝐴 ± ∗𝐹𝐴 |2 vol𝑔 =
1

4

ˆ
𝑋

⟨(𝐹𝐴 ± ∗𝐹𝐴) ∧ (∗𝐹𝐴 ± 𝐹𝐴)⟩

=
1

2

ˆ
𝑋

|𝐹𝐴 |2 ±
1

2

⟨𝐹𝐴 ∧ 𝐹𝐴⟩

= YM(𝐴) ± 4𝜋2𝑝1(Ad(𝑃)) . ■

Remark 5.13. In dimension 4, YM depends on the conformal class of𝑔 only; that is: 𝑌𝑀 computed

with respect to 𝑔 is identical to YM computed with respect to 𝑒2𝑓 𝑔. Moreover, ∗ : Λ2𝑇 ∗𝑋 →
Λ2𝑇 ∗𝑋 also depends only on the conformal class of 𝑔. Even more is true: ∗ determines the

conformal structure. More precisely: the wedge product defines an symmetric bilinear form of

signature (3, 3) on Λ2(R4)∗. If Λ+ ⊂ Λ2(R4)∗ is a maximal positive definite subspace, then there

is a unique conformal class [𝑔] such that Λ+
is the +1–eigenspace of ∗ : Λ2(R4)∗ → Λ2(R4)∗. ♣

5.4 The BPST instanton

The BPST instanton is an important example of an anti-self-dual connection on the trivial SU(2)–
principal bundle over R4

discovered by Belavin, Polyakov, Schwartz, and Tyupkin [BPST75].

Much of the following discussion stems from Atiyah’s wonderful book [Ati79].

To understand Belavin, Polyakov, Schwartz, and Tyupkin [BPST75]’s construction it is

useful to use the quaternions H = R⟨1, 𝑖, 𝑗, 𝑘⟩. Denote by 𝑞 ∈ 𝐶∞(H,H) the identity map and

define 𝑞0, 𝑞1, 𝑞2, 𝑞3 ∈ 𝐶∞(H) by

𝑞 ≕ 𝑞0 + 𝑞1𝑖 + 𝑞2 𝑗 + 𝑞3𝑘.

Denote by 𝑞 the conjugate; that is:

𝑞 = 𝑞0 − 𝑞1𝑖 − 𝑞2 𝑗 − 𝑞3𝑘.

Define

− ∧ − : Ω•(𝑋,H) ⊗ Ω•(𝑋,H) → Ω•(𝑋,H)

as the composition −∧− : Ω•(𝑋,H) ⊗Ω•(𝑋,H) → Ω•(𝑋,H⊗H) and multiplicationH⊗H → H.
Since H is not commutative, − ∧ − is not graded commutative. Indeed,

d𝑞 ∧ d𝑞 = −2(d𝑞0 ∧ d𝑞1 + d𝑞2 ∧ d𝑞3) ⊗ 𝑖
− 2(d𝑞0 ∧ d𝑞2 + d𝑞3 ∧ d𝑞1) ⊗ 𝑗

− 2(d𝑞0 ∧ d𝑞3 + d𝑞1 ∧ d𝑞2) ⊗ 𝑘
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but

d𝑞 ∧ d𝑞 = 2(d𝑞0 ∧ d𝑞1 − d𝑞2 ∧ d𝑞3) ⊗ 𝑖
+ 2(d𝑞0 ∧ d𝑞2 − d𝑞3 ∧ d𝑞1) ⊗ 𝑗

+ 2(d𝑞0 ∧ d𝑞3 − d𝑞1 ∧ d𝑞2) ⊗ 𝑘.

Observe that the coefficients of d𝑞 ∧ d𝑞 are a basis of Λ+H∗
and the coefficients of d𝑞 ∧ d𝑞 span

Λ−H∗
.

The Lie group Sp(1) ≔ {𝑞 ∈ H : 𝑞𝑞 = 1} is isomorphic to SU(2) (H = C ⊕ C 𝑗 ). Observe that

𝔰𝔭(1) ≔ Lie(Sp(1)) = ImH.

Therefore, a Sp(1)–connection on the trivial Sp(1)–bundle over H can be regarded as a 1–form

𝐴 ∈ Ω1(H, ImH). Sp(1) acts on H by

𝑅(𝑔)𝑥 ≔ 𝑥𝑔∗

and on ImH by

Ad(𝑔)𝜉 = 𝑔𝜉𝑔∗.

If 𝐴 is required to satisfy the invariance condition

[𝑅(𝑞)]∗𝐴 = Ad(𝑞)𝐴,

then it must be of the form

𝐴 = 2𝑓 ( |𝑞 |2) Im(𝑞d𝑞) = 𝑓 ( |𝑞 |2) (𝑞d𝑞 − d𝑞𝑞)

To facilitate the computation of 𝐹𝐴, observe that

2 Im(𝑞d𝑞) = 2𝑞d𝑞 − d|𝑞 |2 = −2d𝑞𝑞 + d|𝑞 |2.

Hence,

4 Im(𝑞d𝑞) ∧ Im(𝑞d𝑞) = (−2d𝑞𝑞 + d|𝑞 |2) ∧ (2𝑞d𝑞 − d|𝑞 |2)
= −4|𝑞 |2d𝑞 ∧ d𝑞 + 2d|𝑞 |2 ∧ (𝑞d𝑞 − d𝑞𝑞)
= −4|𝑞 |2d𝑞 ∧ d𝑞 + d|𝑞 |2 ∧ 4 Im(𝑞d𝑞).

Therefore, the curvature of 𝐴 can be computed to be

𝐹𝐴 =

[
2𝑓

(
|𝑞 |2

)
− 4|𝑞 |2 𝑓

(
|𝑞 |2

)
2

]
d𝑞 ∧ d𝑞 +

[
𝑓 ′

(
|𝑞 |2

)
+ 2𝑓

(
|𝑞 |2

)
2

]
d|𝑞 |2 ∧ 2 Im(𝑞d𝑞) .

The first term is anti-self-dual. To make the second term vanish, one needs to solve the ODE

𝑓 ′ + 2𝑓 2 = 0:

𝑓 ( |𝑞 |2) = 1

2

𝜇2

𝜇2 |𝑞 |2 + 1

82



with 𝜇 > 0. Therefore, we arrive at

𝐴𝜇 =
Im(𝜇2𝑞d𝑞)
𝜇2 |𝑞 |2 + 1

.

The above computation singles out the origin in H. The BPST instanton of scale 𝜇 and center 𝑏

is

𝐴𝜇,𝑏 ≔
Im(𝜇2(𝑞 − ¯𝑏)d𝑞)
𝜇2 |𝑞 − 𝑏 |2 + 1

.

𝐴 without any indices shall always refer to 𝐴1,0.

Observe that

𝐹𝐴𝜇,𝑏
=

𝜇2
d𝑞 ∧ d𝑞

(𝜇2 |𝑞 − 𝑏 |2 + 1)2
.

Here are plots of 1/(|𝑞 |2 + 1/𝜇2)2
for 𝜇2 ∈ {0.9, 1, 1.1}.

0 1 2 3 4 5

0

0.5

1

1.5

|𝑞 |

Let us compute YM(𝐴).
𝐹𝐴 =

d𝑞 ∧ d𝑞

( |𝑞 |2 + 1)2
.

To compute the norm of 𝑖 , 𝑗 , 𝑘 with respect to the the negative of the Killing form observe that

ad(𝜉) vanishes on 𝜉 and acts as 2𝜉 on 𝜉⊥. Therefore,

−𝐵(𝑖, 𝑖) = −𝐵( 𝑗, 𝑗) = −𝐵(𝑘, 𝑘) = 8.

Consequently,

|d𝑞 ∧ d𝑞 |2 = 3 · 8 · 8 = 192.

Therefore,

YM(𝐴) = 96 · vol(𝑆3)
ˆ ∞

0

𝑟 3

(𝑟 2 + 1)4
d𝑟 = 16𝜋2.

This uses vol(𝑆3) = 2𝜋2
and evaluates the integral to 1/12.
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Exercise 5.14. Compute YM(𝐴)!
Exercise 5.15. Prove that the parameters 𝜇, 𝑏 are determined by |𝐹𝐴𝜇,𝑏

| and, hence, the gauge
equivalence class of 𝐴𝜇,𝑏 .

Remark 5.16. Sp(1) also acts on H via 𝐿(𝑔)𝑥 ≔ 𝑔𝑥 . This leads to a similar expression with 𝑞 and

𝑞 exchanged. The corresponding connection has self-dual curvature. ♣

5.4.1 The BPST instanton on 𝑆4

Here is another perspective on the BPST instanton. Sp(1) acts on the right of

𝑆7 ≔ {(𝑞1, 𝑞2) ∈ H2
: |𝑞1 |2 + |𝑞2 |2 = 1}

via

𝑅((𝑞1, 𝑞2), 𝑞) ≔ (𝑞1𝑞, 𝑞2𝑞).

The quotient

H𝑃1 ≔ 𝑆7/Sp(1)

parametrizes rank 1 right H–submodules ℓ ⊂ H2
. Denote by 𝑝 : 𝑆7 → H𝑃1

the canonical

projection. Define 𝜃𝐴 ∈ Ω1(𝑆7, 𝔰𝔭(1)) by

𝜃𝐴 ≔ Im(𝑞1d𝑞1 + 𝑞2d𝑞2).

A moment’s thought shows that 𝜃𝐴 is a Sp(1)–principal connection 1–form. Denote the corre-

sponding Sp(1)–principal connection by 𝐴.

Define 𝜄± : H → H𝑃1
by 𝜄+(𝑞) ≔ (𝑞, 1) and 𝜄− (𝑞) ≔ (1, 𝑞). The map 𝑠± : H → 𝑆7

defined by

𝑠+(𝑞) ≔
(𝑞, 1)√︁
|𝑞 |2 + 1

and 𝑠− (𝑞) ≔
(1, 𝑞)√︁
|𝑞 |2 + 1

is trivialisation of 𝜄∗±(𝑝, 𝑅). Moreover, a short computation reveals that

𝑠∗±𝜃𝐴 =
Im(𝑞d𝑞)
|𝑞 |2 + 1

.

Remark 5.17. The above discussion shows the BPST instanton 𝐴 ≔ 𝐴1,0 on H can be extended

to the conformal compactifications H𝑃1
. Uhlenbeck’s removable singularities theorem [Uhl82b]

says that this can always be done provided YM(𝐴) < ∞. ♣
Remark 5.18. Since YM(𝐴) = 16𝜋2

, 𝑝1(Ad(𝑃)) = −4. This is consistent with the fact that the

underlying rank 2 complex bundle 𝐸 has 𝑐1(𝐸) = 0 and 𝑐2(𝐸) = 1. Let 𝐸 be a Hermitian vector

bundle of rank 𝑛. Denote by 𝑃 the corresponding PU(𝑛)–principal bundle. The complexifica-

tion of Ad(𝑃) is End0(𝐸) with the subscript meaning trace-free. A simple computation using

Exercise 4.83 and Proposition 4.84 shows that

𝑝1(Ad(𝑃)) = 𝑟 (𝑐1(𝐸)2 − 2𝑐2(𝐸)) = −2𝑟

(
𝑐2(𝐸) −

1

2

𝑐1(𝐸)2

)
. ♣
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Remark 5.19. The orientation preserving conformal inversion 𝚥 of H×
defined by 𝑓 (𝑞) ≔ 𝑞−1

lifts to 𝑆7
(H𝑃1

) as (𝑞1, 𝑞2) ↦→ (𝑞2, 𝑞1) ([𝑞1 : 𝑞2] ↦→ [𝑞2 : 𝑞1]). Obviously, 𝜃𝐴 is invariant under

this inversion. This shows that 𝚥∗𝐴 is gauge equivalent to 𝐴. Indeed, the gauge transformation

is 𝑞 ↦→ 𝑢 (𝑞) = 𝑞/|𝑞 |. This can also be verified by direct computation. ♣
Set

𝑆4 ≔ {(𝑞, 𝑡) ∈ H ⊕ R : |𝑞 |2 + 𝑡2 = 1}.
Define the stereographic projections 𝜎± : 𝑈± ≔ 𝑆4\{(0,∓1)} → H by

𝜎±(𝑞, 𝑡) ≔
𝑞

1 ∓ 𝑡 .

The map 𝜙 : 𝑆4 → H𝑃1
defined by

𝜙 (𝑞, 𝑡) ≔
{
𝜄+(𝜎+(𝑞, 𝑡)) if (𝑞, 𝑡) ∈ 𝑈 +,

𝜄− (𝜎− (𝑞, 𝑡)) if (𝑞, 𝑡) ∈ 𝑈 −

is a diffeomorphism. Since 𝜎± are conformal, 𝜙∗𝐴 is an anti-self-dual connection on 𝜙∗(𝑝, 𝑅)
defined over 𝑆4

.

Remark 5.20. H𝑃1
carries a natural metric 𝑔FS, the Fubini–Study metric. The standard metric

on 𝑆7 ⊂ H2
descends along 𝑝 because it is Sp(1)–invariant. To obtain a formula proceed as

follows. Denote by 𝑝 : H2\{0} → H𝑃1
the canonical projection. The Riemannian metric 𝑔FS is

characterised by the condition that

(𝑝∗𝑔FS)𝑥 (𝑣,𝑤) = |𝑥 |−2⟨𝑣,𝑤⟩ = |𝑥 |−2
Re(𝑤∗𝑣)

whenever 𝑣,𝑤 ⊥ 𝑥 · H, that is: 𝑥∗𝑣 = 𝑥∗𝑤 = 0. Since 𝑣 ↦→ 𝑣 − 𝑥𝑥∗𝑣/|𝑥 |2 is the projection to

(𝑥 · H)⊥,

(𝑝∗𝑔FS)𝑥 (𝑣,𝑤) = |𝑥 |−2
Re[(𝑤 − 𝑥𝑥∗𝑤/|𝑥 |2)∗(𝑣 − 𝑥𝑥∗𝑣/|𝑥 |2)]

= |𝑥 |−2
Re[(𝑤∗ −𝑤∗𝑥𝑥∗/|𝑥 |2)∗(𝑣 − 𝑥𝑥∗𝑣/|𝑥 |2)]

=
Re(𝑤∗𝑣)

|𝑥 |2 − Re((𝑤∗𝑥) (𝑥∗𝑣))
|𝑥 |4 .

Therefore,

(𝜄∗+𝑔FS)𝑞 (𝑣,𝑤) = Re(𝑤∗𝑣)
1 + |𝑞 |2 − |𝑞 |2 Re(𝑤∗𝑣)

(1 + |𝑞 |2)2
=

Re(𝑤∗𝑣)
(1 + |𝑞 |2)2

.

This reveals that: 4𝑔FS = 𝑔𝑆4 . Moreover, it shows that with respect to this metric |𝐹𝐴1,0
| is

constant! ♣
Set

SL2(H) ≔
{(
𝑎 𝑏

𝑐 𝑑

)
∈ 𝑀2(H) : 𝑎𝑑 − 𝑏𝑐 = 1

}
,

Sp(2) ≔
{(
𝑎 𝑏

𝑐 𝑑

)
∈ 𝑀2(H) : |𝑎 |2 + |𝑐 |2 = |𝑏 |2 + |𝑑 |2 = 1, 𝑎𝑏 + 𝑐𝑑 = 0.

}
,

PSL2(H) ≔ SL2(H){±1}, and

PSp(2) ≔ Sp(2)/{±1}.
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PSL2(H) acts on H𝑃1
via [

𝑎 𝑏

𝑐 𝑑

]
[𝑞1 : 𝑞2] = [𝑎𝑞1 + 𝑏𝑞2, 𝑐𝑞1 + 𝑑𝑞2] .

In fact, PSL2(H) is the orientation-preserving conformal group of H𝑃1
. This action does not

lift to 𝑆7
, but the underlying action of SL2(H) does. The best way to see this is to observe that

SL2(H) acts on H2\{0} and to identify 𝑆7 = (H2\{0})/R+
.

Remark 5.21. PSp(2) acts on

𝑉 ≔

{(
𝑡 𝑞

𝑞 −𝑡

)
: 𝑡 ∈ R, 𝑞 ∈ H

}
� H ⊕ R,

the quaternionic self-adjoint matrices, via conjugation. The latter have an natural inner product

and, obviously, this action orthogonal (and orientation preserving). This exhibits an isomorphism

PSp(2) � SO(𝑉 ) = SO(5) and Sp(2) = Spin(5). However, the diffeomorphism 𝜙 : 𝑆4 → H𝑃1

is not SO(5)–equivariant. There is another inclusion SO(5) = Isom(𝑆4) = Isom(H𝑃1) ↩→
PSL2(H). ♣

An simple computation shows that Sp(2) < SL2(H) preserves 𝜃𝐴. Via 𝜄+ : H → H𝑃1
this

gives the partially defined action[
𝑎 𝑏

𝑐 𝑑

]
𝑞 = (𝑎𝑞 + 𝑏) (𝑐𝑞 + 𝑑)−1

by Möbius transformations. The map 𝑞 ↦→ 𝜇 (𝑞 + 𝑏) lifts to[√
𝜇

√
𝜇𝑏

0 1/√𝜇

]
=

[√
𝜇 0

0 1/√𝜇

] [
1 𝑏

0 1

]
.

Every element of 𝑔 ∈ PSL2(H) can be written uniquely as 𝑔 = 𝑛𝑎𝑘 with

𝑛 =

[
1 𝑏

0 1

]
, 𝑎 =

[√
𝜇 0

0 1/√𝜇

]
and 𝑔 ∈ PSp(2). (This is an Iwasawa decomposition of PSL2(H).) Let us compute(√

𝜇
√
𝜇𝑏

0 1/√𝜇

)∗
𝜃𝐴 =

Im[𝜇2(𝑞1 − 𝑞2

¯𝑏)d𝑞1 + (𝜇2𝑞1 + 𝑞2)d𝑞2]
𝜇2 |𝑞1 + 𝑏𝑞2 |2 + |𝑞2 |2

.

Obviously this yields 𝐴𝜇,𝑏 (by construction). This shows that the BPST instantons all arise from

the actions of SL2(H) on 𝑆7
and H𝑃1

. Therefore, the space of BPST instantons is

SL2(H)/Sp(2) = PSL2(H)/PSp(2) � H × R+.
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5.4.2 The BPST instanton on R × 𝑆3

Consider the conformal diffeomorphism 𝜙 : R × Sp(1) → H×
defined by 𝜙 (𝑡, 𝑔) ≔ 𝑒𝑡𝑔. A brief

computation shows that

𝐴cyl ≔ 𝜙∗𝐴 =
𝑔−1

d𝑔

1 + 𝑒−2𝑡
=

𝜇Sp(1)

1 + 𝑒−2𝑡

with 𝜇 denoting the Maurer–Cartan form on Sp(1). As 𝑡 → −∞, 𝜙∗𝐴 tends to the trivial

connection 𝜃0. As 𝑡 → +∞, 𝜙∗𝐴 tends to 𝑢∗𝜃𝑎 with 𝑢 = idSp(1) : Sp(1) → Sp(1).
Observe that

𝜕𝑡𝐴
cyl(𝑡,−) =

2𝑒−2𝑡𝜇Sp(1)

(1 + 𝑒−2𝑡 )2

and

𝐹𝐴cyl (𝑡,−) =
d𝜇

1 + 𝑒−2𝑡
+ [𝜇 ∧ 𝜇]

2(1 + 𝑒−2𝑡 )2

=

(
− 1

2(1 + 𝑒−2𝑡 ) +
1

2(1 + 𝑒−2𝑡 )2

)
[𝜇 ∧ 𝜇]

= − 𝑒−2𝑡

2(1 + 𝑒−2𝑡 )2
[𝜇 ∧ 𝜇] .

Since [𝜇 ∧ 𝜇] = 4 ∗ 𝜇, this shows that

𝜕𝑡𝐴
cyl(𝑡,−) = −𝐹𝐴cyl (𝑡,−) .

Here is a plot of
𝑒−4𝑡

2(1+𝑒−2𝑡 )4
.

−10 −5 0 5 10

0

2

4

6

·10
−2

𝑡

Exercise 5.22. What is the effect of the scale parameter 𝜇 in this perspective?
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5.5 Hyperkähler manifolds and hyperkähler reduction

Atiyah, Drinfeld, Hitchin, and Manin [ADHM78] managed to construct every ASD instanton

over H with finite Yang–Mills energy and 𝐺 = SU(𝑟 ) using “linear algebra”. This was one

of the early major achievements in mathematical gauge theory. The proper context for their

construction are hyperkähler manifolds and hyperkähler reduction.

Definition 5.23. Let 𝑋 be a smooth manifold of dimension 4𝑛. A hyperkähler structure on 𝑋
consists of a Riemannian metric 𝑔 and a triple of almost complex structures 𝐼𝑎 (𝑎 = 1, 2, 3) such

that

𝑔(𝐼𝑎−, 𝐼𝑎−) = 𝑔, 𝐼1𝐼2 = 𝐼3, and ∇𝐼𝑎 = 0.

(This is equivalent to a torsion-free Sp(𝑛)–structure.) A hyperkähler manifold is a manifold

with a hyperkähler structure.

Observe that 𝜔𝑎 ≔ 𝑔(𝐼𝑎−,−) ∈ Ω2(𝑋 ) defines a symplectic (or Kähler) form on 𝑋 . It is often

convenient to encode 𝐼𝑎 and 𝜔𝑎 (𝑎 = 1, 2, 3) as a hypercomplex structure and a hyperkähler
form

I ≔ 𝑖∗ ⊗ 𝐼1 + 𝑗∗ ⊗ 𝐼2 + 𝑘∗ ⊗ 𝐼3 ∈ (ImH)∗ ⊗ Γ(End(𝑋 )) and

𝝎 ≔ 𝑖∗ ⊗ 𝜔1 + 𝑗∗ ⊗ 𝜔2 + 𝑘∗ ⊗ 𝜔3 ∈ (ImH)∗ ⊗ Ω2(𝑋 ). •

It is a mildly non-trivial fact, that 𝝎 determines I and 𝑔.
Remark 5.24. The hypercomplex structure I equips every tangent space 𝑇𝑥𝑋 with the structure

of an H left-module: for 𝑞 = 𝑡 + 𝜉 with 𝑡 ∈ R and 𝜉 ∈ ImH

𝑞 · 𝑣 ≔ 𝑡𝑣 + 𝐼𝜉𝑣 with 𝐼𝜉 ≔ ⟨I, 𝜉⟩. ♣

Example 5.25. For every 𝑛 ∈ N, H𝑛 is a hyperkähler manifold with 𝑔 denoting the standard

inner product, 𝐼1 = 𝑖 , 𝐼2 = 𝑗 , 𝐼3 = 𝑘 . In this case,

𝝎 =

𝑛∑︁
𝑎=1

d𝑞𝑎 ∧ d𝑞𝑎 .

If Λ ⊂ H𝑛 is a lattice, then H𝑛/Λ is a hyperkähler manifold. ♠
Non-flat compact hyperkähler manifolds are notoriously difficult to construct. The first

example is the 𝐾3 surface and the construction of the hyperkähler structure requires the use of

Yau’s solution of the Calabi conjecture. For mysterious(?) reasons, non-compact hyperkähler

manifolds habitually emerge as moduli spaces in gauge theory. (More about that later.)

If 𝑆 is a hyperkähler manifold and 𝐺 acts on 𝑆 , then 𝑆/𝐺 (if the quotient exists) is typically

not hyperkähler.

Definition 5.26. Let 𝑆 by a hyperkähler manifold with hyperkähler form 𝝎. Let 𝐺 be a compact,

connected Lie group. Set 𝔤 ≔ Lie(𝐺) A hypersymplectic action of 𝐺 on 𝑋 is a smooth action

𝜆 : 𝐺 → Diff (𝑆) such that for every 𝑔 ∈ 𝐺

𝜆(𝑔)∗𝝎 = 𝝎 .
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For 𝜉 ∈ 𝔤 set

𝑣𝜉 ≔ Lie(𝜆) (𝜉) ∈ Vect(𝑆) .
A hyperkähler moment map for 𝜆 is a 𝐺–equivariant smooth map 𝜇 : 𝑆 → (ImH)∗ ⊗ 𝔤∗ such
that for every 𝑥 ∈ 𝑆 and 𝜉 ∈ 𝔤

•(5.27) ⟨𝑇𝑥𝜇, 𝜉⟩ = 𝑖𝑣𝜉 (𝑥 )𝝎 .

Definition 5.28. (1) A quaternionic Hermitian vector space is a left H–module 𝑆 together

with an inner product ⟨·, ·⟩ such that 𝑖, 𝑗, 𝑘 acts by isometries.

(2) The unitary symplectic group Sp(𝑆) is the subgroup of GLH(𝑆) preserving ⟨·, ·⟩. A

quaternionic representation of a Lie group 𝐺 is a Lie group homomorphism 𝜆 : 𝐺 →
Sp(𝑆).

(3) The distinguished hyperkähler moment map of 𝜆 is the map 𝜇 : 𝑆 → (ImH)∗ ⊗ 𝔤∗

defined by

⟨𝜇 (𝑥), 𝑞 ⊗ 𝜉⟩ ≔ 1

2

⟨𝑞 · Lie(𝜌) (𝜉)𝑥, 𝑥⟩. •

Exercise 5.29. H2
is a quaternionic Hermitian vector space. Consider the quaternionic represen-

tation 𝜆 : U(1) → Sp(H2) defined by

𝜆(𝑒𝑖𝛼 ) (𝑞1, 𝑞2) ≔ (𝑞1𝑒
𝑖𝛼 , 𝑞2𝑒

𝑖𝛼 ).

Compute 𝜇.

Example 5.30. Let 𝐺 be a compact, connected Lie group. H ⊗ 𝔤 is a quaternionic Hermitian

vector space. Consider the quaternionic representation 𝜆 : 𝐺 → Sp(H ⊗ 𝔤) defined by

𝜆(𝑔) ≔ 1 ⊗ Ad𝑔 .

Identifying (ImH)∗ = ImH and 𝔤∗ = 𝔤,

𝜇 (𝜉) = 1

2

[𝜉, 𝜉]

= ( [𝜉2, 𝜉3] + [𝜉0, 𝜉1]) ⊗ 𝑖 + ([𝜉3, 𝜉1] + [𝜉0, 𝜉2]) ⊗ 𝑗 + ([𝜉1, 𝜉2] + [𝜉0, 𝜉3]) ⊗ 𝑘

for 𝜉 = 𝜉0 ⊗ 1 + 𝜉1 ⊗ 𝑖 + 𝜉2 ⊗ 𝑗 + 𝜉3 ⊗ 𝑘 ∈ H ⊗ 𝔤. A computation shows that

|𝜇 |2 = 1

2

4∑︁
𝑎,𝑏=0

| [𝜉𝑎, 𝜉𝑏] |2.

Therefore, 𝜇 (𝜉) = 0 if and only if the components of 𝜉 are in an abelian subalgebra of 𝔤. ♠
The following is a direct consequence of (5.27):

Proposition 5.31. In the above situation, 𝑥 ∈ 𝑆 is a regular point of 𝜇 if and only if the stabilizer
𝐺𝑥 is discrete; indeed:

𝑇1𝐺𝑥 = {𝜉 ∈ 𝔤 : 𝑣𝜉 (𝑥) = 0} = {𝜉 ∈ 𝔤 : ⟨𝑇𝑥𝜇, 𝜉⟩ = 0}.

■
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Proposition 5.32. Let 𝑥 ∈ 𝑆 . Set

𝑉𝑥 ≔ {𝑣𝜉 (𝑥) : 𝜉 ∈ 𝔤} and 𝐻𝑥 ≔ ker𝑇𝑥𝜇 ∩𝑉⊥
𝑥 .

𝐻𝑥 and 𝑉𝑥 ⊕ (ker𝑇𝑥𝜇)⊥ are perpendicular H–submodules of 𝑇𝑥𝑆 . Moreover,

𝑉𝑥 ⊕ (ker𝑇𝑥𝜇)⊥ = H ·𝑉𝑥 ,

Proof. By (5.27), ker𝑇𝑥𝜇 = (ImH ·𝑉𝑥 )⊥. Therefore, 𝐻𝑥 = (H ·𝑉𝑥 )⊥; hence: it is an H–submodule.

Since H ·𝑉𝑥 = 𝐻⊥
𝑥 = 𝑉𝑥 ⊕ (ker𝑇𝑥𝜇)⊥, the latter is an H–submodule. ■

Since 𝐺 is compact,

𝔤 = [𝔤, 𝔤] ⊕ 𝔷 with 𝔷 ≔ ker(ad : 𝔤 → End(𝔤)).

Define

𝔷∗ ≔ [𝔤, 𝔤]0 ⊂ 𝔤∗,

the annihilator of [𝔤, 𝔤]. One can identify 𝔷∗ with the dual of 𝔷. (This justifies the notation.) The

importance of 𝔷∗ is that its elements are𝐺–invariant. Since 𝜇 is𝐺–invariant, for 𝜁 ∈ (ImH)∗⊗𝔷∗,
𝐺 acts on 𝜇−1(𝜁 ). Denote by

Δ

the interior of the set of regular value of 𝜇 in (ImH)∗ ⊗ 𝔷∗.

Proposition 5.33. For 𝜁 ∈ Δ set

𝑃𝜁 ≔ 𝜇−1(𝜁 ) and 𝑋𝜁 ≔ 𝜇−1(𝜁 )/𝐺.

(1) For 𝑥 ∈ 𝑃𝜁 , 𝐺𝑥 is finite. Therefore, 𝑋𝜁 is an orbifold and

𝑝𝜁 : 𝑃𝜁 → 𝑋𝜁

is an orbifold principal 𝐺–bundle. (If you don’t know what an orbifold is, then just assume
that 𝐺𝑥 is trivial.)

(2) For 𝑥 ∈ 𝑃𝜁 , 𝑉𝑥 = ker𝑇𝑥𝑝𝜁 .

(3) 𝐻𝜁 ≔
∐
𝑥∈𝑃𝜁 𝐻𝑥 ⊂ 𝑇𝑃𝜁 defines a principal 𝐺–connection 𝐴𝜁 on 𝑃𝜁 .

(4) The 2–form 𝝎 |𝑃𝜁 is𝐺–invariant and 𝐻𝜁–horizontal. It descends to a hyperkähler structure
𝝎̌𝜁 on 𝑋𝜁 .

(5) The curvature 𝐹𝐴𝜁
∈ Ω2(𝑃𝜁 , 𝔤) satisfies

⟨𝐹𝐴𝜁
,𝝎 |𝑋𝜁

⟩ = 0.
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Proof. (2) is obvious.
(3) and (4) follow from Proposition 5.32.

(5) is [GN, Theorem 1.3]. It can be proved directly as follows. Let 𝑣,𝑤 ∈ Γ(𝐻𝜁 )𝐺 and 𝜉 ∈ 𝔤.

Since ⟨𝑣𝜉 , 𝑣⟩ = ⟨𝑣𝜉 ,𝑤⟩ = 0,L𝑣𝜉 ⟨𝑣,𝑤⟩ = 0, and [𝑣𝜉 , 𝑣] = [𝑣𝜉 ,𝑤] = 0,

⟨𝐹𝐻𝜁
(𝑣,𝑤), 𝜉⟩ = ⟨[𝑣,𝑤], 𝑣𝜉 ⟩

= ⟨∇𝑣𝑤 − ∇𝑤𝑣, 𝑣𝜉 ⟩
= ⟨𝑣,∇𝑤𝑣𝜉 ⟩ − ⟨𝑤,∇𝑣𝑣𝜉 ⟩
= ⟨𝑣,∇𝑣𝜉𝑤⟩ − ⟨𝑤,∇𝑣𝜉 𝑣⟩ = 2⟨𝑣,∇𝑣𝜉𝑤⟩.

Therefore and since I is parallel,

𝐹𝐻𝜁
(𝐼𝜉−, 𝐼𝜉−) = 𝐹𝐻𝜁

. ■

Definition 5.34. The hyperkähler manifold (𝑋𝜁 , 𝝎̌𝜁 ) is the hyperkähler quotient of (𝑆,𝝎) by𝐺
at level 𝜁 . This is often denoted as

𝑋𝜁 ≔ 𝑆///𝜁𝐺.

If 𝜁 is omitted, then 𝜁 = 0 is assumed. •
Remark 5.35. Here is an important observation. If dim𝑋𝜁 = 4, then 𝐴𝜁 is an ASD instanton on

𝑝𝜁 : 𝑃𝜁 → 𝑋𝜁 . ♣
Example 5.36. Consider the adjoint representation 𝐺 → Sp(H ⊗ 𝔤). Let 𝑇 < 𝐺 be a maximal

torus. Set 𝔱 = Lie(𝑇 ) ⊂ 𝔤. If 𝜇 (𝜉) = 0 then there is a 𝑔 ∈ 𝐺 such that Ad𝑔 (𝜉) ∈ H⊗ 𝔱. If 𝜉 ∈ H⊗ 𝔱

and Ad𝑔 (𝜉) ∈ H ⊗ 𝔱, then 𝑔 is in the normaliser 𝑁 (𝑇 ) and 𝑇 acts trivially. Therefore,

(H ⊗ 𝔤)///𝐺 = (H ⊗ 𝔱)/𝑊

with𝑊 ≔ 𝑁 (𝑇 )/𝑇 denoting the Weyl group. For 𝐺 = U(𝑛), 𝔱 = 𝑖R𝑛 and𝑊 = 𝑆𝑛 . Therefore,

(H ⊗ 𝔲(𝑛))///U(𝑛) = H𝑛/𝑆𝑛 ≕ Sym
𝑛 H,

the 𝑛–fold symmetric product of H. This is, of course, an orbifold, but varying 𝜁 generically

gives smooth hyperkähler manifolds. ♠
As 𝜁 varies in a connected component of Δ, the diffeomorphism type 𝑋𝜁 persists but 𝝎̌𝜁

varies. The question of how to determine this variation (in cohomology) has been considered

by Duistermaat and Heckman [DH82, §2]. [XXX: skip this in class.]

Proposition 5.37. Set

𝑃 ≔ {(𝑥, 𝜁 ) ∈ 𝑆 × Δ : 𝜇 (𝑥) = 𝜁 } and 𝑋 ≔ 𝑃/𝐺.

The tangent bundle 𝑇𝑃 decomposes as

𝑇(𝑥,𝜁 )𝑃 = 𝐻 ⊕ 𝐾 ⊕ 𝑉

with
𝑉 ≔ ker𝑇𝜋, 𝐻 ≔ ker𝑇 𝜇 ∩𝑉⊥, and 𝐾 ≔ (ker𝑇 𝜇)⊥ = (𝐻 ⊕ 𝑉 )⊥.
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(1) The projection 𝜋 : 𝑃 → 𝑋 is a principal 𝐺–bundle. The projection 𝜌 : 𝑋 → Δ is a fiber
bundle.

(2) 𝐻 ⊕ 𝐾 is the horizontal distribution of a 𝐺–principal connection on 𝜋 .

(3) 𝐾 is a 𝐺–invariant Ehresmann connection on 𝜌 ◦ 𝜋 . Hence, it descends to an Ehresmann
connection on ˇ𝐾 on 𝜌 . The vertical tangent bundle of 𝜌 lifts to 𝐻 .

(4) The form (pr
∗
𝑆
𝝎)2,0 is 𝐺–equivariant and (𝐻 ⊕ 𝐾)–horizontal. Therefore, it descends to 𝝎̌

on 𝑋 . It is of bi-degree (0, 2) with respect to ˇ𝐾 and satisfies

𝝎̌ |𝑋𝜁
= 𝝎̌𝜁 .

(5) Denote by 𝜏 ∈ (ImH)∗ ⊗ 𝔷∗ ⊗ Ω1(Δ) the tautological 1–form on Δ. Denote by 𝜋𝔷𝐹𝐻 ∈
Ω0,2(𝑋, 𝔷) the (0, 2)–form defined by

𝜋𝔷𝐹𝐻 |𝑋𝜁
≔ 𝜋𝔷𝐹𝐻𝜁

.

With respect to ˇ𝐾 ,
d𝝎̌ = d

1,0𝝎̌ = −⟨𝜌∗𝜏 ∧ 𝜋𝔷𝐹𝐻 ⟩.

(6) Suppose that ˇ𝐾 is a complete Ehresmann connection. Let 𝜻 ∈ 𝐶∞( [𝑎, 𝑏],Δ) smooth path.
With tra𝜻 : 𝑋𝜻 (𝑎) → 𝑋𝜻 (𝑏 ) denoting parallel transport along 𝜻 ,

𝝎̌𝜻 (𝑎) = (tra𝜻 )∗𝝎̌𝜻 (𝑏 ) −
ˆ 𝑏

𝑎

⟨ ¤𝜻 (𝑡), (tra𝜻 | [𝑎,𝑡 ] )
∗𝜋𝔷𝐹𝐻𝜻 (𝑡 ) ⟩ d𝑡 .

Proof. (1), (2), and (3) hold by construction.

The triple of 2–forms pr
∗
𝑆
𝝎 ∈ (ImH)∗ ⊗ Ω2(𝑃) is closed and 𝐺–invariant. However, it

fails to be (𝐻 ⊕ 𝐾)–horizontal: it has components of bi-digree (2, 0) and a (1, 1). In fact, by

Proposition 5.32 pr
∗
𝑆
𝝎 ∈ (ImH)∗ ⊗ Γ(Λ2𝐻 ∗ ⊕ 𝐾∗ ⊗ 𝑉 ∗). This implies (4).

Since dpr
∗
𝑆
𝝎 = 0,

𝜋∗
d𝝎̌ = d

1,0(pr
∗
𝑆𝝎)2,0 = −d

2,−1(pr
∗
𝑆𝝎)1,1 = −(pr

∗
𝑆𝝎𝑆 )1,1(𝐹𝐻⊕𝐾 (·, ·), ·).

Since 𝝎 |𝑉 = 0, the above is a section of (ImH)∗ ⊗ Λ2(𝐻 ⊕ 𝐾)∗ ⊗ 𝐾∗
with the Λ2(𝐻 ⊕ 𝐾)∗ factor

arising from 𝐹𝐻⊕𝐾 . By (5.27), pr
∗
𝑆
𝝎 (𝑣𝜉 , ·) = ⟨𝑇𝑥𝜇 ◦ pr𝑆 , 𝜉⟩. Moreover, 𝑇𝑥𝜇 ◦ pr𝑆 = (𝜌 ◦ 𝜋)∗𝜏 .

Therefore,

d
1,0(pr

∗
𝑆𝝎)2,0 = −⟨𝜋∗𝜌∗𝜏, 𝐹𝐻⊕𝐾 ⟩ = −⟨𝜋∗𝜌∗𝜏, 𝜋𝔷𝐹𝐻⊕𝐾 ⟩.

It remains to show that 𝜋𝔷𝐹𝐻⊕𝐾 = 𝜋𝔷𝐹𝐻 . Let 𝑣,𝑤 ∈ Γ(𝐻 ⊕ 𝐾)𝐺 and 𝜉 ∈ 𝔷. As in the proof of

Proposition 5.33 (5),

⟨𝐹𝐻𝜁
(𝑣,𝑤), 𝜉⟩ = ⟨[𝑣,𝑤], 𝑣𝜉 ⟩

= ⟨∇𝑣𝑤 − ∇𝑤𝑣, 𝑣𝜉 ⟩
= ⟨𝑣,∇𝑤𝑣𝜉 ⟩ − ⟨𝑤,∇𝑣𝑣𝜉 ⟩
= ⟨𝑣,∇𝑣𝜉𝑤⟩ − ⟨𝑤,∇𝑣𝜉 𝑣⟩ = 2⟨𝑣,∇𝑣𝜉𝑤⟩.
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Therefore, for𝑤 = 𝛾 (𝑝)𝑣𝜂 ∈ Γ(𝐾)

⟨𝐹𝐻𝜁
(𝑣,𝑤), 𝜉⟩ = 2⟨𝑣,𝛾 (𝑝)∇𝑣𝜉 𝑣𝜂⟩ = 2⟨𝑣,𝛾 (𝑝)𝑣 [𝜉,𝜂 ]⟩ = 0.

Consequently, 𝜋𝔷𝐹𝐻⊕𝐾 = 𝜋𝔷𝐹𝐻 . Therefore, d𝝎̌ = −⟨𝜌∗𝜏 ∧ 𝜋𝜁 𝐹𝐻 ⟩. Since the latter is of bi-degree
(1, 2), this finishes the proof of (5).

By (5),

d

d𝑡
(tra𝜻 | [𝑎,𝑡 ] )

∗𝝎̌𝜻 (𝑡 ) =
d

d𝜏

����
𝜏=0

(tra𝜻 | [𝑎,𝑡 ] )
∗(tra𝜻 | [𝑡,𝑡+𝜏 ] )

∗𝝎̌𝜻 (𝑡+𝜏 )

= −⟨ ¤𝜻 (𝑡), (tra𝜻 | [𝑎,𝑡 ] )
∗𝜋𝔷𝐹𝐻𝜻 (𝑡 ) ⟩.

Integration proves (6). ■

5.6 Aside: The Gibbon–Hawking ansatz

[XXX: The following is a little of an aside and will be discussed in the problem session. It at

least shows that there are a lot of hyperkähler 4–manifolds.]

Let𝑈 be an open subset of R3
. Denote by 𝑔R3 the restriction of the standard metric on R3

to

𝑈 . Let 𝜋 : 𝑋 → 𝑈 be a principal U(1)–bundle. Denote by 𝜕𝛼 ∈ Vect(𝑋 ) the generator of the
U(1)–action. Let 𝑖𝜃 ∈ Ω1(𝑋, 𝑖R) be a U(1)–connection 1–form and let 𝑓 ∈ 𝐶∞(𝑈 , (0,∞)) be a
positive smooth function such that

(5.38) d𝜃 = − ∗3 d𝑓 .

Set

𝑔 ≔ 𝑓 𝜋∗𝑔R3 + 1

𝑓
𝜃 ⊗ 𝜃

and define complex structures 𝐼1, 𝐼2, 𝐼3 by

𝐼𝑖𝜕𝛼 = 𝑓 −1𝜕𝑥𝑖 and 𝐼𝑖𝜕𝑥 𝑗 =

3∑︁
𝑘=1

𝜀𝑖 𝑗𝑘𝜕𝑥𝑘 .

The corresponding Hermitian forms are

𝜔𝑖 ≔ 𝜃 ∧ d𝑥𝑖 +
1

2

3∑︁
𝑗,𝑘=1

𝜀𝑖 𝑗𝑘 𝑓 d𝑥 𝑗 ∧ d𝑥𝑘 .

Writing (5.54) as

d𝜃 = −1

2

3∑︁
ℓ, 𝑗,𝑘=1

𝜀ℓ 𝑗𝑘𝜕𝑥ℓ 𝑓 d𝑥 𝑗 ∧ d𝑥𝑘 ,

we see that

d𝜔𝑖 = d𝜃 ∧ d𝑥𝑖 +
1

2

3∑︁
𝑗,𝑘=1

𝜀𝑖 𝑗𝑘d𝑓 ∧ d𝑥 𝑗 ∧ d𝑥𝑘 = 0.

Therefore, we have proved the following.
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Proposition 5.39. (𝑋,𝑔, 𝐼1, 𝐼2, 𝐼3) is hyperkähler manifold.

This construction is called the Gibbons–Hawking ansatz.
Remark 5.40. By construction, the length of the U(1)–orbit over 𝑥 ∈ 𝑈 is 𝑓 (𝑥)−1/2

. ♣
Remark 5.41. The fact that

𝑖 (𝜕𝛼 )𝜔𝑖 = −d𝑥𝑖

means that the map 𝜋 : 𝑋 → 𝑈 ⊂ R3
is a hyperkähler moment map for the action of U(1) on 𝑋

(with R3
and (𝔲(1) ⊗ ImH)∗ identified suitably. ♣

Remark 5.42. By (5.54),

Δ𝑓 = 0.

Conversely, suppose that 𝑓 : 𝑈 → R is harmonic and the cohomology class of ∗3d𝑓 lies in

im(𝐻 2(𝑈 , 2𝜋Z) → 𝐻 2(𝑈 ,R)), then there is a U(1)–bundle 𝑋 over𝑈 together a connection 𝑖𝜃

satisfying

d𝜃 = − ∗3 d𝑓 .

♣
Example 5.43 (R4

). Let𝑈 = R3\{0} and define 𝑓 : 𝑈 → R by

𝑓 (𝑥) = 1

2|𝑥 | .

This function is harmonic and satisfies

− ∗3 d𝑓 =
1

2

vol𝑆2 .

Since vol(𝑆2) = 4𝜋 , there is a U(1)–bundle 𝑋 over 𝑈 together with a connection 𝑖𝜃 such that

(5.54). Therefore, the Gibbins–Hawking ansatz yields a hyperkähler metric on 𝑋 .

By Chern–Weil theory the first Chern number of the restriction of 𝑋 to 𝑆2
is

ˆ
𝑆2

𝑖
𝑖

4𝜋
vol𝑆2 = −1.

Up to is isomorphism, there is only one principal U(1)–bundle over 𝑆2
: the Hopf bundle

𝜋 : 𝑆3 → 𝑆2
and the U(1)–action given by 𝑒𝑖𝛼 · (𝑧0, 𝑧1) = (𝑒−𝑖𝛼𝑧0, 𝑒

−𝑖𝛼𝑧1). If 𝑔𝑆3 denotes the

standard metric on 𝑆3
, then

𝜃 = 𝑔𝑆3 (−𝜕𝛼 , ·)

satisfies

d𝜃 = 𝜋∗
vol𝑆2 .

It follows that

𝑋 = 𝑆3 × (0,∞) = R4\{0}

and the Gibbons–Hawking ansatz gives the metric

𝑔 = 2𝑟 𝜃 ⊗ 𝜃 + 1

2𝑟
(d𝑟 ⊗ d𝑟 + 𝑟 2𝑔𝑆2) .
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The change of coordinates 𝜌 =
√

2𝑟 rewrites this metric as

𝑔 = d𝜌 ⊗ d𝜌 + 𝜌2(𝜃 ⊗ 𝜃 + 1

4

𝑔𝑆2) = d𝜌 ⊗ d𝜌 + 𝜌2𝑔𝑆3 .

This means that the Gibbons–Hawking ansatz yield the standard metric on R4
. ♠

Example 5.44 (Taub–NUT). Let𝑈 = R3\{0}, let 𝑐 > 0, and define 𝑓𝑐 : 𝑈 → R by

𝑓𝑐 (𝑥) =
1

2|𝑥 | + 𝑐.

This function is harmonic and we have

d𝑓𝑐 = d𝑓 .

By the preceding discussion, 𝑋 = 𝑆3 × (0,∞) and the Gibbons–Hawking ansatz gives the metric

𝑔 =

(
1

2𝑟
+ 𝑐

)−1

𝜃 ⊗ 𝜃 +
(

1

2𝑟
+ 𝑐

)
(d𝑟 ⊗ d𝑟 + 𝑟 2𝑔𝑆2) .

As 𝑟 tends to zero this metric is asymptotic to

𝑐−1𝜃 ⊗ 𝜃 + 𝑔R3 .

Although, the metric appears singular at 𝑟 = 0, the coordinate change 𝜌 =
√

2𝑟 rewrites it as

(1 + 𝑐𝜌2)d𝜌 ⊗ d𝜌 + 𝜌2

(
(1 + 𝑐𝜌2)−1𝜃 ⊗ 𝜃 + (1 + 𝑐𝜌2) 1

4

𝑔𝑆2

)
which is smooth.

This metric is called the Taub–NUT metric. It is non-flat hyperkähler metric on R4
. It was

first discovered by Taub [Tau51] and Newman, Tamburino, and Unti [NTU63]. The Taub–NUT

space is the archetype of an ALF space. ♠
Remark 5.45. It was observed by LeBrun [LeB91] that the Taub–NUT metric is in fact Kähler

for the standard complex structure on C2
. Thus it yields a non-flat Ricci-flat Kähler metric on

C2
. ♣

Example 5.46 ((R4\{0})/Z𝑘 ). Let 𝑘 ∈ {1, 2, 3, . . .} Let𝑈 = R3\{0} and define 𝑓 : 𝑈 → R by

𝑓 (𝑥) ≔ 𝑘

2|𝑥 | .

This function is harmonic and it satisfies

− ∗3 d𝑓 = 𝑘vol𝑆2 .

Thus, the Gibbons–Hawking ansatz applies. Denote by (𝑋𝑘 , 𝑔𝑘 ) the Riemannian manifold

obtained in this way. If 𝑘 = 1, then this R4
with its standard metric. Let us understand the cases

𝑘 ⩾ 2.
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The restriction of 𝑋𝑘 to 𝑆2
has Chern number −𝑘 . This U(1)–bundle is 𝑆3/Z𝑘 → 𝑆2

.

Consequently,

𝑋𝑘 = 𝑆3/Z𝑘 × (0,∞) = R4/Z𝑘 .

We can choose the connection 1-form 𝑖𝜃𝑘 on 𝑋𝑘 such that its pullback to 𝑋1 is 𝑖𝑘𝜃1. It follows

that the pullback of 𝑔𝑘 to 𝑋1 can be written as

2𝑘𝑟 𝜃 ⊗ 𝜃 + 𝑘

2𝑟
(d𝑟 ⊗ d𝑟 + 𝑟 2𝑔𝑆2) .

Up to a coordinate change 𝑟 ↦→ 𝑘𝑟 this is the standard metric on R4
. It follows that 𝑔𝑘 is the

metric induced by the standard metric on R4
. ♠

Example 5.47 (Eguchi–Hanson and multi-center Gibbons–Hawking). Let 𝑥1, . . . , 𝑥𝑘 be 𝑘 distinct

points in R3
. Set𝑈 ≔ R3\{𝑥1, . . . , 𝑥𝑘 } and define 𝑓 : 𝑈 → R by

𝑓 (𝑥) =
𝑘∑︁
𝑖=1

1

2|𝑥 − 𝑥𝑖 |
.

From the in discussion Example 5.43 it is clear that the Gibbons–Hawking ansatz for 𝑓 produces

a Riemannian manifold whose apparent singularities over 𝑥1, . . . , 𝑥𝑘 can be removed. Denote

the resulting manifold by (𝑋,𝑔).
Since

𝑓 (𝑥) = 𝑘

2|𝑥 | +𝑂 ( |𝑥 |−2) as |𝑥 | → ∞,

(𝑋,𝑔) is asymptotic at infinity to R4/Z𝑘 . These spaces are called ALE spaces of type 𝐴𝑘−1. For

𝑘 = 2, this metric was discovered by Eguchi and Hanson [EH79]. The metrics for 𝑘 ⩾ 3 were

discovered by Gibbons and Hawking [GH78].

Let us understand the geometry and topology of these spaces somewhat more. Suppose 𝛾 is

an arc in R3
from 𝑥𝑖 to 𝑥 𝑗 avoiding all the other points 𝑥𝑘 . The pre-image in 𝑋 of any interior

point of 𝛾 is an 𝑆1
while the pre-images of the end points are points. Therefore,

𝜋−1(𝛾) ⊂ 𝑋

is diffeomorphic to 𝑆2
. Suppose 𝛾 is straight line segment in R3

with unit tangent vector

𝑣 =

3∑︁
𝑖=1

𝑎𝑖𝜕𝑥𝑖

with 𝑎2

1
+ 𝑎2

2
+ 𝑎2

3
= 1. The tangent spaces to 𝜋−1(𝛾) are spanned by 𝜕𝛼 and 𝑣 . In particular, they

are invariant with respect to the complex structure

𝐼𝑣 ≔ 𝑎1𝐼1 + 𝑎2𝐼2 + 𝑎3𝐼3.

Its volume is given by ˆ
𝜋−1 (𝛾 )

𝑎1𝜔1 + 𝑎2𝜔2 + 𝑎3𝜔3.
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Therefore,

[𝜋−1(𝛾)] ≠ 0 ∈ 𝐻2(𝑋,Z).

If necessary we can reorder the points 𝑥𝑖 so that for 𝑖 = 1, . . . , 𝑘 − 1, there is a straight-line

segment 𝛾𝑖 joining 𝑥𝑖 and 𝑥𝑖+1. Set

Σ𝑖 ≔ 𝜋−1(𝛾𝑖) .

It is not difficult to see that [Σ1], . . . , [Σ𝑘−1] generate 𝐻2(𝑀 ;Z). It is an exercise to show that

[Σ𝑖] · [Σ 𝑗 ] =
{
−2 if 𝑖 = 𝑗,

1 if 𝑖 ≠ 𝑗 .

♠
Remark 5.48. Kronheimer [Kro89b] gave an alternative construction of the ALE spaces of type

𝐴𝑘−1 (in fact, all ALE spaces) as hyperkähler quotients. He also classified these spaces completely

[Kro89a]. ♣
Example 5.49. Let 𝑥1, . . . , 𝑥𝑘 be 𝑘 distinct points in R3

and let 𝑐 > 0. Set 𝑈 ≔ R3\{𝑥1, . . . , 𝑥𝑘 }
and define 𝑓 : 𝑈 → R by

𝑓 (𝑥) =
𝑘∑︁
𝑖=1

1

2|𝑥 − 𝑥𝑖 |
+ 𝑐.

The Gibbons–Hawking ansatz for 𝑓 gives rise to the so-called multi-center Taub–NUT metric.

♠
Example 5.50. The following is due to Anderson, Kronheimer, and LeBrun [AKL89]. Let𝑥1, 𝑥2, . . .

be an infinite sequence of distinct points in R3
and denote by𝑈 the complement of these points.

If
∞∑︁
𝑗=2

1

𝑥1 − 𝑥 𝑗
< ∞,

then

𝑓 (𝑥) ≔
∞∑︁
𝑗=1

1

2|𝑥 − 𝑥 𝑗 |

defines a harmonic function on𝑈 . The Gibbons–Hawking ansatz gives rise to a hyperkähler

manifold 𝑋 whose second homology 𝐻2(𝑋,Z) is infinitely generated. Anderson, Kronheimer,

and LeBrun prove that the metric 𝑔 is complete. ♠
This is not a complete list of interesting examples of hyperkähler manifold which can be

produced using the Gibbons–Hawking ansatz. The most egregious omission is that of the

Ooguri–Vafa metric.

5.7 Anti-self-duality as a moment map

Let 𝐺 be a compact connecte semi-simple Lie group. Fix 𝑘 ∈ {2, 3, . . .}. (The choice of 𝑘

ultimately turns out to be quite insubstantial. For concreteness one could take 𝑘 = 2.) Set

A ≔𝑊 𝑘,2Ω1(H, 𝔤)
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Here the prefix𝑊 𝑘,2
denotes taking the completion with respect to the norm ∥−∥𝑊 𝑘,2 defined

by

∥𝐴∥2

𝑊 𝑘,2 ≔

𝑘∑︁
ℓ=0

ˆ
H
|∇𝑘𝐴|2.

This is a Hilbert manifold (indeed: a Hilbert space). The 𝐿2
–inner product defines a Riemannian

metric on A and, obviously, ImH acts on 𝑇A: for 𝑎 ∈ 𝑇𝐴A and 𝜉 ∈ ImH

𝐼𝜉𝑎 ≔ −𝑎(𝜉 · −) .

(The minus sign is neccessary to preserve 𝐼𝑖𝐼 𝑗 = 𝐼𝑘 .)

Therefore, A is an infinite dimensional hyperkähler manifold.

Set

G0 ≔ exp(𝑊 𝑘+1,2(H, 𝔤)) ≔ {𝑢 = exp(𝜉) : 𝜉 ∈𝑊 𝑘+1,2(H, End(𝔤))}.

The subscript zero indicates that the gauge transformations 𝑢 ∈ G0. G0 acts on the right ofA

via

𝑢∗𝐴 ≔ Ad(𝑢) ◦𝐴 + 𝜇 (𝑢) = ”𝑢−1𝐴𝑢 + 𝑢−1
d𝑢”.

This action preserves the hyperkähler structure onA. The infinitesimal action of 𝜉 ∈ Lie(G0) =
𝑊 𝑘+1,2(H, 𝔤) is

𝑣𝜉 (𝐴) = d𝐴𝜉 .

This is a (Hilbert space) quaternionic representation. Let us compute the distinguished

hyperkähler moment map: for 𝐴 ∈ A, 𝑞 ∈ ImH, and 𝑢 ∈ Lie(G0) =𝑊 𝑘+1,2(H, 𝔤)

⟨𝜇 (𝐴), 𝑞 ⊗ 𝜉⟩ = 1

2

⟨𝐼𝑞d𝐴𝜉, 𝐴⟩.

To digest this expression observe that

d
∗(𝑓 𝜔𝑞) =

4∑︁
𝑎=1

−(𝜕𝑎 𝑓 )𝑖𝜕𝑥𝑎𝜔𝑞 =

4∑︁
𝑎=1

−(𝜕𝑎 𝑓 )⟨𝐼𝑞𝜕𝑥𝑎 ,−⟩ =
4∑︁
𝑎=1

(𝜕𝑎 𝑓 )⟨𝜕𝑥𝑎 , 𝐼𝑞−⟩

=

4∑︁
𝑎=1

(𝜕𝑎 𝑓 )d𝑥𝑎 ◦ 𝐼𝑞 = −𝐼𝑞d𝑓 .

Therefore,

⟨𝜇 (𝐴), 𝑞 ⊗ 𝜉⟩ = −1

2

⟨d∗𝐴 (𝜉 · 𝜔𝑞), 𝐴⟩ = −1

2

⟨𝜉 · 𝜔𝑞), d𝐴𝐴⟩ = −1

2

⟨𝜉 · 𝜔𝑞, 𝐹𝐴⟩ = −1

2

⟨𝜉 · 𝜔𝑞, 𝐹+𝐴⟩.

Identifying, Lie(G0) and its dual and ImH∗ = ImH = Λ+H via 𝑞∗ ↦→ − 1

2
𝜔𝑞 exhibits

𝜇 (𝐴) = 𝐹+𝐴 .

Therefore, the anti-self-dual part of the curvature is the hyperkähler moment map! (The

phenomenon that an interesting non-linear partial differential equation appears as a moment

maps is suprisingly common.)
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Now the hyperkähler reduction of theA byG0 is

Mfr

𝐺 ≔ {𝐴 ∈ A : 𝐹+𝐴 = 0}/G0.

This is the moduli space of framed 𝐺 ASD instantons on H. The adjactive framed has to do

with the fact that the quotient is by gauge transformations which decay to the identity at infinity.

Mfr

𝐺
has an action by𝐺 . The quotient is the actual moduli space (but it does not have the feature

of being hyperkähler).

For every [𝐴] ∈ Mfr

𝐺

𝑘 ≔
1

4𝜋2
YM(𝐴) ∈ N0.

This number 𝑘 is the instanton number or charge of 𝐴. It is customary to decompose

Mfr

𝐺 =
∐
𝑘∈N0

Mfr

𝐺,𝑘
.

5.8 Preparation: projections and connections

Let 𝑋 be a smooth manifold. Denote by R𝑛 ≔ R𝑛 × 𝑋 the trivial vector bundle of rank 𝑁 over

𝑋 . Let 𝑃 ∈ Γ(End(R𝑛)) be a projection of constant rank; that is:

𝑃2 = 𝑃 and rk 𝑃 = 𝑟 .

Define the complementary projection by

𝑄 ≔ 1 − 𝑃 .

These define a decomposition

R𝑛 = 𝐸 ⊕ 𝐹 with 𝐸 ≔ im 𝑃 and 𝐹 ≔ im𝑄.

With respect to this decomposition

d =

(
𝑃d 𝑃d𝑄

𝑄d𝑄 𝑄d

)
.

The diagonal components define covariant derivatives ∇ ≔ 𝑃d on 𝐸 and ∇ ≔ 𝑄d on 𝐹 . Since

the roles of 𝐸 and 𝐹 are interchangable, let us focus on 𝐸. If 𝑃 is an orthogonal projection; that

is: 𝑃∗ = 𝑃 , then ∇ is an orthogonal covariant derivative on 𝐸. (Similarly, if 𝑃 is complex linear,

etc.)

To compute the curvature of ∇ it is convenient to define the covariant derivative
¯∇ on R𝑛 by

¯∇𝑠 ≔ (d +𝐴)𝑠 with 𝐴 ≔ −𝑄d𝑃 = 𝑄d𝑄.

The covariant derivative
¯∇ preserves the subbundle 𝐸 ⊂ R𝑁 and induces ∇. The curvature 𝐹 ¯∇

of
¯∇ is

𝐹 ¯∇ = d𝑄 ∧ d𝑄 = d𝑃 ∧ d𝑃
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To see this observe that

𝑄d𝑄 ∧𝑄d𝑄 = 𝑄 (d𝑄 −𝑄d𝑄) ∧ d𝑄 = 0

Therefore,

𝐹∇ = 𝑃 (d𝑃) ∧ (d𝑃)𝑃 .
Henceforth, let us assume that 𝑃 is orthogonal. Suppose that 𝑅 : R𝑛 → R𝑛−𝑟 is a surjective

vector bundle morphism and that

𝐸 = ker𝑅 and 𝐹 = im𝑅∗.

A moment’s thought shows that

𝑃 = 1 −𝑄 and 𝑄 = 𝑅∗(𝑅𝑅∗)−1𝑅

(This becomes particularly simple if 𝑅𝑅∗ = 1.) Since 𝑅𝑃 = 0 and 𝑃𝑅∗ = 0, the above considera-

tions yields

𝐹∇ = 𝑃 (d𝑅∗) ∧ (𝑅𝑅∗)−1(d𝑅)𝑃 .
Remark 5.51. Let 𝑘, 𝑟 ∈ N0.

(1) Denote by Gr𝑟 (R𝑘+𝑟 ) the Grassmannian of 𝑟–planes in R𝑘+𝑟 . There is a tautological vector
bundle 𝑝 : 𝑉 → Gr𝑟 (R𝑘+𝑟 ) (indeed, a subbundle of R𝑘+𝑟 → Gr𝑟 (R𝑘+𝑟 ) defined by

𝑉 ≔
{
(Π, 𝑣) ∈ Gr𝑟 (R𝑘+𝑟 ) × R𝑘+𝑟 : 𝑣 ∈ Π

}
.

𝑉 inherits an Euclidean inner product from R𝑘+𝑟 .

(2) The procedure discussed above defines a covariant derivative ∇ on 𝑉 .

(3) Let 𝑋 is a smooth manifold. If 𝑓 : 𝑋 → Gr𝑟 (R𝑘+𝑟 ) is a smooth map, then 𝑓 ∗𝑝 : 𝑓 ∗𝑉 → 𝑋

is a Euclidean rank 𝑟 vector bundle. Upto isomorphism every Euclidean rank 𝑟 vector

bundle over 𝑋 comes from such a map for some value of 𝑘 . (This is a basic result in the

theory of vector bundles: a baby version of Whitney’s embedding theorem.) Of course,

∇ defines a connection on 𝑓 ∗𝑉 . It turns out that all ASD instantons on H𝑃1 = 𝑆4
can be

obtained in this way.

(4) Denote by

St
∗
𝑘
(R𝑘+𝑟 ) ≔

{
𝑅 ∈ Hom(R𝑘+𝑟 ,R𝑘 ) : 𝑅 is surjective

}
and

St𝑘 (R𝑘+𝑟 ) ≔
{
𝑅 ∈ St

∗
𝑘
(R𝑘+𝑟 ) : 𝑅𝑅∗ = 1

}
the Stiefel manifold and the orthogonal Stiefel manifold. (To match this with our earlier

definition, observe that 𝑅 and 𝑅∗ are equivalent data.) The maps

ker : St
∗
𝑘
(R𝑘+𝑟 ) → Gr𝑟 (R𝑘+𝑟 ) defined by ker(𝑅) ≔ ker𝑅

makes St
∗
𝑘
(R𝑘+𝑟 ) into a GL𝑘 (R)–principal bundle and St𝑘 (R𝑘+𝑟 ) into a O(𝑘)–principal

bundles. Indeed, they are the frame bundle and the orthogonal frame bundle of 𝑉⊥(=
im𝑅∗) respectively.
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(5) The diffeomorphism Gr𝑘 (R𝑘+𝑟 ) � Gr𝑟 (R𝑘+𝑟 ) turns St𝑟 (R𝑘+𝑟 ) into an O(𝑟 )–principal
bundle over Gr𝑟 (R𝑘+𝑟 ). Indeed, it is the orthogonal frame bundle of 𝑉 . Therefore, it

inherits a O(𝑟 )–principal connection 𝐴∇ from the covariant derivative ∇ on 𝑉 .

(6) St𝑟 (R𝑘+𝑟 ) has a canonical O(𝑟 )–invariant Riemannian metric 𝑔; indeed:

𝑔( ˆ𝑅1, ˆ𝑅2) = tr( ˆ𝑅∗
1

ˆ𝑅2).

This equips it with an O(𝑟 )–principal connection 𝐴𝑔. Indeed:

𝐴𝑔 = 𝐴∇!

(7) The Gram–Schmidt process defines a map

GS : St
∗
𝑘
(R𝑘+𝑟 ) → St𝑘 (R𝑘+𝑟 ).

Indeed,

GS(𝑅) = (𝑅𝑅∗)−1/2𝑅.

(8) Finally, the above precedure can be thought of (universally) as computing the the pullback

to St𝑘 (R𝑘+𝑟 ) of the canonical O(𝑟 )–principal connection 𝐴 on St𝑟 (R𝑘+𝑟 ) → Gr𝑟 (R𝑘+𝑟 )
and determining its curvature 𝐹𝐴. The total space of this the pullback bundle is{

(𝑅, 𝑆) ∈ St
∗
𝑘
(R𝑘+𝑟 ) × Hom(R𝑘+𝑟 ,R𝑟 ) : 𝑆∗𝑅 = 0, 𝑆𝑆∗ = 1

}
.

The formulae for the connection and the curvature from above apply immediately. ♣

5.9 The ADHM construction

The ADHM construction due to Atiyah, Drinfeld, Hitchin, and Manin [ADHM78] is one of the

early groundbreaking discoveries in mathematical gauge theory: it gives a concrete description

ofMfr

SU(𝑟 ),𝑘 as a finite-dimensional hyperkähler reduction. This makes use of ideas from many

areas of geometry and has ultimately impacted much of mathematics itself. In the following I

will only discuss the construction and not give a complete treatment. If you want to learn more

about this, read [DK90, §3.3], [Ati79], and/or [ADHM78].

The following perspective on the ADHM construction is taken from [Ati79]. Define a

Sp(1)–connection 𝐴 ∈ Ω1(H𝑘 , 𝔰𝔭(1)) by

𝐴 ≔

𝑘∑︁
𝑎=1

Im(𝑞𝑎d𝑞𝑎)
1 + |𝑞 |2 .

This connection satisfies

𝐹𝐴 =

∑𝑘
𝑎=1

𝑟𝑑𝑞𝑎d𝑞𝑎

(1 + |𝑞 |2)2
;

in particular,

⟨𝐹𝐴,𝝎⟩ = 0 ∈ 𝐶∞(H𝑘 , 𝔰𝔭(1) ⊗ ImH∗) .
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The latter is an higher dimensional analogue of the ASD condition. The idea is to obtain ASD

instantons on H by pulling back 𝐴 with a suitable map 𝑓 : H → H𝑘 . Of course,

𝑢∗𝐴 =

𝑘∑︁
𝑎=1

Im(𝑢𝑎d𝑢𝑎)
1 + |𝑢 |2 .

Atiyah [Ati79] makes the ansatz
𝑢 (𝑞) = 𝜆(𝐵 − 𝑞)−1

with 𝜆 = (𝜆1, . . . , 𝜆𝑘 ) ∈ H𝑘 (a row vector) and 𝐵 a symmetric 𝑘 × 𝑘–matrix of quaternions.

It turns that this gives a ASD instanton if and only if

𝐵∗𝐵 + 𝜆∗𝜆 is a a real 𝑘 × 𝑘 matrix

and for every 𝑞 ∈ H
ker

(
𝜆𝐵 − 𝑞

)
= 0.

The first condition can be seen to correpond to 𝜇 (𝐵, 𝜆) = 0 for the distinguished hyperkähler

moment map of O(𝑘) acting on

𝑆1,𝑘 ≔ Sym(H𝑘 ) ⊕ H𝑘 .

For 𝑘 = 1 this gives the BPST instantons (after applying a conformal inversion 𝑞 ↦→ 𝑞−1
). If

𝐵 = diag(𝑏1, . . . , 𝑏𝑛) with the entries distinct and 𝜆1, . . . , 𝜆𝑘 > 0, then the above give an type of

ASD instanton discovered by ’t Hooft.

Theorem 5.52 (Atiyah, Drinfeld, Hitchin, and Manin [ADHM78]). Every Sp(1) ASD instanton
with instanton number 𝑘 arises from some choice of (𝜆, 𝐵) as above. Two such ASD instantons are
gauge equivalent if and only if there are 𝑔 ∈ Sp(1) and 𝑇 ∈ O(𝑘) with

𝜆′ = 𝑞𝜆𝑇 and 𝐵′ = 𝑇 −1𝐵𝑇 .

This can also be phrased as

Mfr

Sp(1),𝑘 = 𝑆◦
1,𝑘
///O(𝑘) .

Here the superscript ◦ indicates imposing the non-degeneracy condition.

A similar story works for Sp(𝑟 ), SU(𝑟 ), O(𝑟 ). For Sp(𝑟 ), 𝜆 is replaced by Λ ∈ H𝑟×𝑘 and 𝑢 is

replaced by

𝑈 (𝑞) = Λ(𝐵 − 𝑥)−1.

The corresponding connection is of the form

(1 +𝑈 ∗𝑈 )−1/2(𝑈 ∗
d𝑈 ) (1 +𝑈 ∗𝑈 )−1/2 + (1 +𝑈 ∗𝑈 )1/2

d(1 +𝑈 ∗𝑈 )−1/2.

Ultimately,

Mfr

Sp(𝑟 ),𝑘 = 𝑆◦
𝑟,𝑘
///O(𝑘) with 𝑆𝑟,𝑘 ≔ Sym(H𝑘 ) ⊕ H𝑟×𝑘 .
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I still owe you an explanation for why the above connections indeed are ASD instantons. It

is not impossible to do this by a brute-force computation, but here is a nicer explanation. Let

𝐶, 𝐷 ∈ HomH(H𝑘+𝑟 ,H𝑘 )

by 𝑘 × (𝑘 + 𝑟 ) matrices of quaternions. The subscript H denotes linearity with respect to the

right H–module structure. For 𝑞 = (𝑞1, 𝑞2) ∈ H2\{0} set

𝑅(𝑞) ≔ 𝑞1𝐶 + 𝑞2𝐷.

Assume that 𝑅(𝑞) is surjective for every 𝑞 ∈ H2\{0}. The H right H–module ker𝑅(𝑞) depends
only on [𝑞] ∈ H𝑃1

(which we take to be the left quotient). This defines a quaternionic vector

bundle

𝐸 ≔ ker𝑅 ⊂ H𝑘+𝑟 .

The curvature of the induced covariant derivative ∇ on 𝐸 can be computed using the technology

from the previous subsection. It suffices to do this over H ↩→ H𝑃1
. Over H,

𝑅(𝑞) = 𝑞𝐶 + 𝐷.

Therefore,

𝐹∇ = 𝑃𝐶∗
d𝑞 ∧ (𝑅𝑅∗)−1

d𝑞𝐶𝑃.

If the matrix 𝑅𝑅∗ is always real for every 𝑞 ∈ H, then the above is anti-self-dual. (In fact, this is

an if and only if.)

Now 𝑅 can be brought into the normal form

𝑅 =
(
Λ∗ (𝐵 − 𝑞)∗

)
Therefore,

𝑅𝑅∗ = Λ∗Λ + 𝐵∗𝐵 − (𝐵∗𝑞 + 𝑞𝐵) + |𝑞 |2

is real if and only if

Λ∗Λ + 𝐵∗𝐵 and 𝐵∗𝑞 + 𝑞𝐵

are real. The latter condition is equivalent to 𝐵 being symmetric. The final ingredient is to

observe that (
−1
𝑈

)
(1 +𝑈 ∗𝑈 )−1/2

parametrises ker𝑅 and the corresponding connection is also

(1 +𝑈 ∗𝑈 )−1/2(𝑈 ∗
d𝑈 ) (1 +𝑈 ∗𝑈 )−1/2 + (1 +𝑈 ∗𝑈 )1/2

d(1 +𝑈 ∗𝑈 )−1/2.

The following perspective is useful. The Grassmannian Gr
H
𝑘
(H𝑘+𝑟 ) carries a natural Sp(𝑟 )–

bundle with a connection. The data above specifies a map H(→ H𝑃1) → Gr𝑘 (H𝑘+𝑟 ) which
pulls back the standard connection to an ASD instanton.

C
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Here is the ADHM description for SU(𝑟 ). Let 𝑟 ∈ N, 𝑘 ∈ N0. Set

𝑆𝑟,𝑘 ≔ HomC(C𝑟 ,H ⊗C C𝑘 ) ⊕ H ⊗R 𝔲(𝑘)

The tensor product ⊗C uses the C right-module structure that arises from right-multiplication

by 𝑖 ∈ H. 𝑇 ∈ H ⊗R 𝔲(𝑘) defines an endomorphism of H ⊗C C𝑘 given by the composition of

multiplication in H and the action of 𝔲(𝑘) on C𝑘 . For (Ψ,𝑇 ) ∈ 𝑆𝑟,𝑘 and 𝑥 ∈ H define

𝑅𝑥 : (H ⊗C C𝑘 ) ⊕ C𝑟 → H ⊗C C𝑘

by

𝑅𝑥 (𝜙, 𝑣) ≔ (𝑇 − 𝑥∗) (𝜙) + Ψ(𝑣).

(Ψ,𝑇 ) is non-degenerate if 𝑅𝑥 is surjective for every 𝑥 ∈ H. In this case,

𝑉 ≔
∐
𝑥∈H

ker𝑅𝑥 ⊂ H × [(H ⊗C C𝑘 ) ⊕ C𝑟 ]

is a Hermitian subbundle of rank

rk𝑉 = 𝑟

and inherits a covariant dervivative ∇ = ∇Ψ,𝑇 : Γ(𝑉 ) → Ω1(H,𝑉 )

∇𝑠 ≔ (d𝑠)⊥

with (−)⊥ denoting the orthogonal projection onto 𝑉 . Set

𝑆◦
𝑟,𝑘

≔
{
(Ψ,𝑇 ) ∈ 𝑆𝑟,𝑘 : (Ψ,𝑇 ) is non-degenerate

}
.

𝐺 ≔ U(𝑘) acts on 𝑆𝑟,𝑘 and 𝑆◦𝑟,𝑘 by the defining representation on C𝑘 and the adjoint representa-

tion on 𝔲(𝑘). Evidently, if (Ψ,𝑇 ) and 𝑔(Ψ,𝑇 ) give rise to gauge equivalent covariant derivatives.
The action of 𝐺 on 𝑆𝑟,𝑘 is a quaternionic representation. It turns out that the vanishing of the

distinguished hyperkähler moment map is precisely the condition for ∇Ψ,𝑇 to have anti-self-dual

curvature (in complete analogy with the∞–dimensional case considered earlier.)

Again, the data (Ψ,𝑇 ) defines a map to

Gr
C
𝑟 (H ⊗C C𝑘 ⊕ C𝑟 ) = Gr

C
𝑟 (C2𝑘+𝑟 ).

The factor C𝑟 has a particular meaning. To see this, observe that 𝑅 can be extended from H
to H2\{0} as

𝑅(𝑞0, 𝑞1) =
(
𝑞∗

0
𝑇 − 𝑞∗

1
𝑞∗

0
.
)

The kernel of 𝑅 depends only on [𝑞0, 𝑞1] ∈ H𝑃1
. The fiber over∞ = [0, 1] is precisely C𝑟 .
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5.10 Dimensional reduction

Let 𝐺 be a Lie group. Let 𝑋 be an oriented Riemannian manifold. Let 𝑑 ∈ N. Let 𝑝 : 𝑃 → 𝑋 be

a 𝐺–principal bundle. Denote by pr𝑋 : 𝑋 × R𝑑 → 𝑋 the canonical projection map. Consider

pr
∗
𝑌
𝑝 : pr

∗
𝑌
𝑃 = 𝑃 × R𝑑 → R × 𝑌 . Let A ∈ A(pr

∗
𝑌
𝑝) ⊂ Ω1(𝑃 × R𝑑 , 𝔤)Ad

. A can be decomposed as

A = 𝐴 +
𝑑∑︁
𝑎=1

𝜉𝑎d𝑡𝑎 .

with 𝐴 ∈ Ω1(𝑃 × R𝑑 , 𝔤)Ad
satisfying 𝑖𝜕𝑡𝑎𝐴 = 0 and 𝜉𝑎 ∈ 𝐶∞(𝑃 × R𝑑 , 𝔤)Ad

(𝑎 ∈ {1, . . . , 𝑑}). It is
useful to think:

𝐴 ∈ 𝐶∞(R𝑑 ,A(𝑝)) and 𝜉𝑎 ∈ 𝐶∞(R𝑑 , Γ(Ad(𝑃)))

The curvature of A is

𝐹A = 𝐹𝐴 −
𝑑∑︁
𝑎=1

(
𝜕𝑡𝑎𝐴 − d𝐴𝜉𝑎

)
∧ d𝑡𝑎 +

1

2

𝑑∑︁
𝑎,𝑏=1

(
𝜕𝑡𝑎𝜉𝑏 − 𝜕𝑡𝑎𝜉𝑏 + [𝜉𝑎, 𝜉𝑏]

)
d𝑡𝑎 ∧ d𝑡𝑏 .

Here 𝐹𝐴 denotes the curvature of 𝐴 restricted to the slices {𝑡} × 𝑌 .
Dimensional reduction is to impose

𝜕𝑡𝑎𝐴 = 0 and 𝜕𝑡𝑎𝜉𝑏 = 0 (𝑎, 𝑏 ∈ {1, . . . , 𝑑}).

In this case, the above expression for 𝐹A simplifies to

𝐹A = 𝐹𝐴 +
𝑑∑︁
𝑎=1

d𝐴𝜉𝑎 ∧ d𝑡𝑎 +
1

2

𝑑∑︁
𝑎,𝑏=1

[𝜉𝑎, 𝜉𝑏]d𝑡𝑎 ∧ d𝑡𝑏 .

The dimensional reduction of the Yang–Mills functional yields the following Yang–Mills–Higgs
functional

YMH(𝐴, 𝜉) ≔ 1

2

ˆ
𝑋

|𝐹𝐴 |2 +
𝑑∑︁
𝑎=1

|d𝐴𝜉𝑎 |2 +
1

4

𝑑∑︁
𝑎,𝑏=1

| [𝜉𝑎, 𝜉𝑏] |2.

More generally, for any representation 𝜌 : 𝐺 → O(𝑉 ) and 𝐺–invariant function 𝑄 : 𝑉 → R
one can consider the Yang–Mills–Higgs functional

YMH(𝐴,𝜙) ≔ 1

2

ˆ
𝑋

|𝐹𝐴 |2 + |d𝐴𝜙 |2 +𝑄 (𝜙)

for 𝐴 ∈ A(𝑝) and 𝜙 ∈ Γ(𝑃 ×𝜌 𝑉 ).
The dimensional reductions of the anti-self-duality equation to dimensions 3, 2, 1 give rise

to the Bogomolny equation (monopoles), the Hitchin equation (Higgs bundles), and Nahm’s

equation. Let us derive these equations. I’ll give you a little survey of these equations afterwards.
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Proposition 5.53. Let (𝑌,𝑔) be an oriented Riemannian 3–manifold. Let (𝑝 : 𝑃 → 𝑌, 𝑅) be a
𝐺–principal bundle. Let 𝐴 ∈ A(𝑝, 𝑅) and 𝜉 ∈ Γ(Ad(𝑃)). The 𝐺–principal connection

A ≔ 𝐴 + 𝜉d𝑡 ∈ A(pr
∗
𝑌 (𝑝, 𝑅))

is anti-self-dual on 𝑌 × R if and only if the Bogomolny equation

(5.54) 𝐹𝐴 = − ∗ d𝐴𝜉

holds.

Proof. To prove this, one needs to understand how the Hodge-∗-operator on 𝑋 ≔ 𝑌 × R and 𝑌

are related. The orientation on𝑋 is so that vol𝑋 = vol𝑌 ∧d𝑡 . As a consequence for 𝛼, 𝛽 ∈ Ω2(𝑌 ),

𝛼 ∧ ∗𝑋 𝛽 = ⟨𝛼, 𝛽⟩vol𝑋 = ⟨𝛼, 𝛽⟩vol𝑌 ∧ d𝑡 = 𝛼 ∧ ∗𝑌 𝛽 ∧ d𝑡 .

Therefore,

∗𝑋 𝛽 = ∗𝑌 𝛽 ∧ d𝑡

Similarly, for 𝛼 ∈ Ω1(𝑌 )
∗𝑋 (𝛼 ∧ d𝑡) = ∗𝑌𝛼.

Therefore,

∗𝑋 𝐹A = (∗𝑌 𝐹𝐴) ∧ d𝑡 + ∗𝑌 (d𝐴𝜉) .

∗𝑋 𝐹A = −𝐹A thus amounts to the above equation. ■

Proposition 5.55. Let (Σ, 𝑔) be an oriented Riemann surface Let (𝑝 : 𝑃 → Σ, 𝑅) be a 𝐺–principal
bundle. Let 𝐴 ∈ A(𝑝, 𝑅) and 𝜉1, 𝜉2 ∈ Γ(Ad(𝑃)). The 𝐺–principal connection

A ≔ 𝐴 + 𝜉1d𝑡1 + 𝜉2d𝑡2 ∈ A(pr
∗
𝑌 (𝑝, 𝑅))

is anti-self-dual if and only if Hitchin’s equation

𝐹𝐴 + [𝜉1, 𝜉2] = 0,

d𝐴𝜉1 + ∗d𝐴𝜉2 = 0.
(5.56)

holds.

Proof. By the above,

𝐹A = 𝐹𝐴 + d𝐴𝜉1 ∧ d𝑡1 + d𝐴𝜉2 ∧ d𝑡2 + [𝜉1, 𝜉2]d𝑡1 ∧ d𝑡2.

The orientation on 𝑋 = R2 × 𝑌 is vol𝑋 = d𝑡1 ∧ d𝑡2 ∧ volΣ. Therefore,

∗𝑋 (d𝑡1 ∧ d𝑡2) = volΣ

and for 𝛼 ∈ Ω1(Σ)

∗𝑋 (𝛼 ∧ d𝑡1) = −(∗Σ𝛼) ∧ d𝑡2 and ∗𝑋 (𝛼 ∧ d𝑡2) = (∗Σ𝛼) ∧ d𝑡1. ■
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Proposition 5.57. Let 𝐼 be an interval. Let 𝜉0, 𝜉1, 𝜉2, 𝜉3 ∈ 𝐶∞(𝐼 , 𝔤) The 𝐺–principal connection

A ≔ 𝜉0d𝑡0 + 𝜉1d𝑡1 + 𝜉2d𝑡2 + 𝜉3d𝑡3

is anti-self-dual if and only if Nahm’s equation

¤𝜉1 + [𝜉0, 𝜉1] + [𝜉2, 𝜉3] = 0,

¤𝜉2 + [𝜉0, 𝜉2] + [𝜉3, 𝜉1] = 0,

¤𝜉3 + [𝜉0, 𝜉3] + [𝜉1, 𝜉2] = 0

(5.58)

holds.

Proof. By the above,

𝐹A =

3∑︁
𝑎=1

( ¤𝜉𝑎 + [𝜉0, 𝜉𝑎])d𝑡0 ∧ d𝑡𝑎 +
1

2

3∑︁
𝑎,𝑏=1

[𝜉𝑎, 𝜉𝑏]d𝑡𝑎 ∧ d𝑡𝑏 .

Of course,

∗(d𝑡0 ∧ d𝑡𝑎) =
1

2

3∑︁
𝑏,𝑐=1

𝜀𝑎𝑏𝑐d𝑡𝑏 ∧ d𝑡𝑐

This implies the assertion directly. ■

5.11 The Bogomolny equation

Bogomolny [Bog76] Prasad and Sommerfield [PS75]

Proposition 5.59. Let (𝑌,𝑔) be an oriented Riemannian 3–manifold. Let (𝑝 : 𝑃 → 𝑌, 𝑅) be a
𝐺–principal bundle. If 𝐴 ∈ A(𝑝, 𝑅) and 𝜉 ∈ Γ(Ad(𝑃)) is a solution of the Bogomolny equation
(5.54), then

d𝐴 ∗ d𝐴𝜉 = 0.

If 𝑌 is closed, then
d𝐴𝜉 = 0 and 𝐹𝐴 = 0.

Proof. The Bianchi identity d𝐴𝐹𝐴 = 0 immediately implies that d
∗
𝐴

d𝐴𝜉 = 0. Therefore,

ˆ
𝑌

|d𝐴𝜉 |2 =
ˆ
𝑌

⟨𝜉, d∗𝐴d𝐴𝜉⟩. ■

A consequence of the above on typically studies the Bogomolny equation on a non-compact

𝑌 or admits 𝐴 and 𝜉 to have singularities. In fact, the study of the Bogomolny equation has

largely focused on R3
.
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Examples. Here are two important examples.

Example 5.60. Denote by (𝑝 : 𝑆3 → 𝑆2, 𝑅) the Hopf bundle. The adjoint bundle Ad(𝑆3) is trivial
bundle 𝑖R. The U(1)–principal connection 𝐵 induced by the standard Riemannian metric on 𝑆3

satisfies

𝐹𝐵 = − 𝑖
2

vol𝑆2 .

For 𝑘 ∈ Z define 𝜆𝑘 : U(1) → U(1) by 𝜆𝑘 (𝑧) ≔ 𝑧𝑘 and denote by 𝑝𝑘 : 𝑃𝑘 ≔ 𝑆3 ×𝜆𝑘 U(1) → 𝑆2

the corresponding U(1)–principal bundle. 𝐵 induced a U(1)–principal connection 𝐵𝑘 on 𝑝𝑘
satisfying

𝐹𝐵𝑘 = −𝑖𝑘
2

vol𝑆2 .

Denote by 𝜋 : R3\{0} → 𝑆2
the projection map. Let𝑚 ∈ R. The Dirac monopole of mass𝑚

and charge 𝑘 defined by

𝐴Dirac

𝑘
≔ 𝜋∗𝐵𝑘 and 𝜉Dirac

𝑚,𝑘
≔

(
𝑚 − 𝑘

𝑟

)
𝑖

2

satisfies (5.54). ♠
Remark 5.61 (Scaling monopoles). Let 𝜆 > 0. Define 𝑠𝜆 : R3 → R3

by 𝑠𝜆 (𝑥) ≔ 𝜆𝑥 . If (𝐴, 𝜉) is a
solution to (5.54), the so is

(𝑠∗
𝜆
𝐴, 𝜆𝑠∗

𝜆
𝜉) .

The mass parameter can be varied by scaling. ♣
Example 5.62. Let𝑚 ∈ R. Let 𝑘 ∈ N. Let 𝑥1, . . . , 𝑥𝑘 ∈ R3

. Set

𝜉 ≔

(
𝑚 −

𝑘∑︁
𝑎=1

1

|𝑥 − 𝑥𝑎 |

)
𝑖

2

.

There is a U(1)–principal bundle (𝑝 : 𝑃 → R3\{𝑥1, . . . , 𝑥𝑘 }, 𝑅) and a connection 𝐴 ∈ A(𝑝, 𝑅)
which together with 𝜉 satisfies (5.54). ♠
Example 5.63. Bogomolny [Bog76] and Prasad and Sommerfield [PS75] discovered the BPS
monopole, a particular solution of (5.54). Identify R3 = 𝔰𝔭(1). In particular, 𝑆2 ⊂ 𝔰𝔭(1). Denote
by 𝜏 ∈ 𝐶∞(𝑆2, 𝔰𝔭(1)) the inclusion map. A brief computation shows that

d𝜏 =
1

2

[𝜏, ∗𝑆2d𝜏],

∗𝑆2d𝜏 = −1

2

[𝜏, d𝜏],

[d𝜏 ∧ d𝜏] = 4𝜏vol𝑆2,

[(∗𝑆2d𝜏) ∧ (∗𝑆2d𝜏)] = 4𝜏vol𝑆2 .

Therefore, the ansatz
𝐴 = 𝑓 (𝑟 ) ∗𝑆2 d𝜏 and 𝜉 = 𝑔(𝑟 )𝜏
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leads to

𝐹𝐴 = 𝑓 ′d𝑟 ∧ ∗𝑆2d𝜏 + 2(−𝑓 + 𝑓 2)𝜏vol𝑆2 and

d𝐴𝜉 = 𝑔
′𝜏d𝑟 + (𝑔 − 2𝑓 𝑔)d𝜏 .

Since ∗d𝑟 = 𝑟 2
vol

2

𝑆 , the Bogomolny equation therefore amounts to the ODE

𝑓 ′ = 𝑔 − 2𝑓 𝑔 and

𝑟 2𝑔′ = 2(𝑓 − 𝑓 2) .

Here is a family of solutions (𝑚 > 0) to this equation

𝑓𝑚 (𝑟 ) = −1

2

( 𝑚𝑟

sinh𝑚𝑟
− 1

)
and 𝑔𝑚 (𝑟 ) = 𝑚

2

(
1

tanh𝑚𝑟
− 1

𝑚𝑟

)
.

Observe that

𝑓𝑚 =
1

2

+𝑂 (𝑚𝑟𝑒−2𝑚𝑟 ) . and 𝑔𝑚 =

(
𝑚

2

− 1

2𝑟

)
+𝑂 (𝑒−2𝑚𝑟 ).

This gives the 1–parameter family of solutions

(𝐴BPS

𝑚 , 𝜉BPS

𝑚 ) 𝑚 > 0

of (5.54). ♠
Remark 5.64.

(1) Let 𝑋 be a manifold of dimension at most 3. Let 𝐿 → 𝑋 be a Hermitian line bundle. Set

𝐸 ≔ 𝐿 ⊕ 𝐿∗ → 𝑋 . Eventhough, 𝐿 might not be trivial, 𝐸 always is. Here is why. Since

3 < 4, a generic section 𝑠 of 𝐸 is nowhere-vanishing. Since 𝐸 inherits a complex structure

𝑖 from 𝐿, 𝐸 has at two linearly independent sections: 𝑠 , 𝑖𝑠 . The Hermitian inner product,

defines an 𝑖–anti-linear map 𝑗 : 𝐿 → 𝐿∗ that can be extended to a futher almost complex

structure 𝑗 on 𝐸 satifying 𝑖 𝑗 = − 𝑗𝑖 . Consequently, 𝐸 is a quaternionic line bundle and

𝑠, 𝑖𝑠, 𝑗𝑠, 𝑖 𝑗𝑠 are linearly independent.

(2) As a concrete instantance of the above but in setting of U(1)– and Sp(1)–principal bundles.
The Hopf bundle 𝑝 : 𝑃 ≔ 𝑆3 → 𝑆2

is non-trivial. Define 𝜌 : U(1) → Sp(1) by

𝜌 (𝑒𝑖𝛼 ) = 𝑒𝑖𝛼 .

The associated Sp(1)–principal bundle 𝑞 : 𝑄 ≔ 𝑆3 ×𝜌 Sp(1) → 𝑆2
is trivial. Indeed, the

section 𝑠 : 𝑆2 = 𝑆3/U(1) → 𝑄 defined by

𝑠 ( [𝑥]) ≔ [𝑥, 𝑥∗]

trivialises 𝑄 . Here 𝑆3 = Sp(1).
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(3) The Dirac monopole is built from the standard U(1)–principal connection 1–form 𝜃 ∈
Ω1(𝑆3, 𝑖R) and the constant U(1)–equivariant map 𝑖 ∈ 𝐶∞(𝑃, 𝑖R)Ad

. The latter induces

the Sp(1)–equivariant map 𝜉 ∈ 𝐶∞(𝑄, 𝔰𝔭(1))Ad
by

𝜉 ( [𝑥,𝑔]) ≔ Ad(𝑔)−1(Lie 𝜌) (𝑖) = 𝑔∗𝑖𝑔.
The pullback via 𝑠 satisfies

𝑠∗𝜂 ( [𝑥]) = 𝑥𝑖𝑥∗.
This is the map 𝜏 : 𝑆2 = 𝑆3/U(1) → 𝔰𝔭(1). This shows that the Higgs field of the BPS

monopole is (exponentially) asymptotic to the Higgs field of the Dirac monopole.

The same is true for the connection. The connection 1–form 𝜃 on 𝑃 can be written as

𝜃 = 𝑖 Re(d𝑥∗𝑥𝑖) = 1

2

(𝑖d𝑥∗𝑥𝑖 + 𝑥∗d𝑥) .

The induced connection on 𝑄 descends from

1

2

Ad(𝑔)−1(𝑖d𝑥∗𝑥𝑖 + 𝑥∗d𝑥) + 𝑔−1
d𝑔.

with 𝑥 ∈ 𝑃 and 𝑔 ∈ Sp(1). The pullback via 𝑠 is

1

2

𝑥 (𝑖d𝑥∗𝑥𝑖 + 𝑥∗d𝑥)𝑥∗ + 𝑥d𝑥∗ =
1

2

(𝑥𝑖d𝑥∗𝑥𝑖𝑥∗ + 𝑥d𝑥∗) .

Therefore, for 𝜏 (𝑥) = 𝑥𝑖𝑥∗,

−1

4

[𝜏, d𝜏] = −1

4

[𝑥𝑖𝑥∗, d𝑥𝑖𝑥∗ + 𝑥𝑖d𝑥∗]

= −1

4

(𝑥𝑖𝑥∗d𝑥𝑖𝑥∗ − 𝑥d𝑥∗ + d𝑥𝑥∗ − 𝑥𝑖d𝑥∗𝑥𝑖𝑥∗)

= 𝜃 .

This proves the statement about the connection. ♣

Energy and charge. Henceforth, we restrict to 𝐺 = SU(2) = Sp(1) and, in fact, shortly to

𝑌 = R3
. Consider the Yang–Mills–Higgs functional

YMH(𝐴, 𝜉) = 1

2

ˆ
𝑌

|𝐹𝐴 |2 + |d𝐴𝜉 |2.

Obviously,

YMH(𝐴, 𝜉) = 1

2

ˆ
𝑌

|𝐹𝐴 ± ∗d𝐴𝜉 |2 ∓ 4𝜋𝑁 with 𝑁 ≔
1

4𝜋

ˆ
𝑌

⟨𝐹𝐴 ∧ d𝐴𝜉⟩.

For 𝑌 = R3
, by Stokes’ theorem

𝑁 =
1

4𝜋
lim

𝑟→∞

ˆ
𝜕𝐵𝑟 (0)

⟨𝐹𝐴, 𝜉⟩

Under suitable boundary conditions this limit exits and indeed agrees with the degree of

𝜉 : 𝑆2

∞ → 𝑆2 ⊂ 𝔰𝔭(1). In particular,

𝑁 ∈ Z.

This is the anlogue of the energy identity for the (anti-)self-duality equation.
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Moduli spaces. It is customary study (5.54) on the trivial Sp(2)–bundle over R3
with the

following boundary condition that, with respect to the isomorphism Sp(1) × (R3\{0}) � 𝑄
discussed above,

(𝐴, 𝜉) = (𝐴Dirac

𝑘
, 𝜉Dirac

1,𝑘
) + lower order terms at infinity.

(The mass parameter can be adjusted by scaling.) Denote the corresponding space of configura-

tions of (𝐴, 𝜉) by C𝑘 . The relevant group of gauge transformationsG0 is required to decay to

the identity at infinity. The framed moduli space of charge 𝑘 monopoles is then

N𝑘 ≔ {(𝐴, 𝜉) ∈ C𝑘 : (5.54)}/G0.

Theorem 5.65.N𝑘 is a hyperkähler manifold of dimension 4𝑘 . 𝑆1 × R3 acts freely on N𝑘 .

The strongly centred framed monopole moduli space of charge 𝑘 is

˜N0

𝑘
≔

�N𝑘

𝑆1 × R3
.

˜N0

2
is Atiyah–Hitchin manifold, already a tantalising geometric object.

The fact thatN𝑘 is always non-empty is one of the first major mathematical achievments

of Taubes. His idea is to start with a Dirac monopole with 𝑘 (well-separated) singularities and

to repair the singularities by gluing in BPS monopoles. Using cut-off functions this can be

done approximately. To make these approximate solutions actual solutions requires a delicate

analysis; cf. Jaffe and Taubes [JT80].

Theorem 5.66 (Donaldson [Don84]). A choice of isometry R3 = R × C defines a bijection between
N𝑘 and the space of rational maps 𝑓 : C𝑃1 → C𝑃1 of degree 𝑘 satisfying 𝑓 ( [1 : 0]) = [0 : 1].

This theorem was the first to give a global uniform understanding of N𝑘 for all 𝑘 . This was

conjectured in Murray [Mur83, Appendix B]. Donaldson’s proof is rather roundabout. Jarvis

[Jar00] gave a direct and geometric proof (of an extension of Theorem 5.66.

the cyclic group 𝐶𝑘 acts on ˜N0

𝑘
. Denote by 𝜇𝑘 the 𝑘–th roots of unity. There are canonical

maps 𝜆ℓ : 𝐶𝑘 → 𝜇𝑘 which sends the generator of 𝐶𝑘 to 𝑒
2𝜋𝑖ℓ/𝑘

. Therefore, it also acts on the

cohomology H
𝑖 ( ˜N0

𝑘
,C). Denote by

H
𝑖
ℓ ( ˜N0

𝑘
,C)

the subspace in which the action of 𝐶𝑘 agrees with 𝜆ℓ . There is an analoge of the above spaces

cohomology replaced by 𝐿2
harmonic formsH. Sen’s conjecture [Sen94] asserts that

(1) If 𝑘, ℓ are coprime, thenH2𝑘−2

ℓ ( ˜N0

𝑘
,C) � C and vanishes otherwise.

(2) If 𝑘, ℓ are not coprime, thenH𝑖
ℓ ( ˜N0

𝑘
,C) vanishes.

This conjecture was a main driving force in the study of the geometry of moduli spacee
˜N0

𝑘
.

The cohomological version of theses statements are have been proved by Segal and Selby [SS96]

The first part of these conjectures has now been proved by Fritzsch, Kottke, and Singer [FKS18]

(modulo the appearance of part 2 of that paper?).
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Monopoles and scattering. Let 𝐼 be an interval. Let Σ be a Riemann surface. Let 𝐸 → Σ be a

Hermitian vector bundle with det𝐸 = C. Let d𝐴 be a compatible covariant derivative on 𝐸 and

let 𝜉 ∈ Γ(𝔰𝔲(𝐸)). The covariant derivative d𝐴 splits as

d𝐴 = 𝜕𝐴 + 𝜕𝐴 + d𝑡 ∧ ∇𝐴,𝜕𝑡 .
Therefore,

𝐹𝐴 = d
2

𝐴 = 𝜕𝐴𝜕𝐴 + 𝜕𝐴𝜕𝐴 + d𝑡 ∧ ([∇𝐴,𝜕𝑡 , 𝜕𝐴] + [∇𝐴,𝜕𝑡 , 𝜕𝐴]) .
and

∗d𝐴𝜉 = ∇𝐴,𝜕𝑡 𝜉 · volΣ + 𝑖d𝑡 ∧ 𝜕𝐴𝜉 − 𝑖d𝑡 ∧ 𝜕𝐴𝜉
By direct inspection, (5.54) is equivalent to

[∇𝐴,𝜕𝑡 + 𝑖𝜉, 𝜕𝐴] = 0 and

𝜕𝐴𝜕𝐴 + 𝜕𝐴𝜕𝐴 = ∇𝐴,𝜕𝑡 𝜉volΣ .

Suppose now that 𝐼 = [0, 1]. Restriction to 𝑡 defines a holomorphic structure 𝜕𝐴,𝑡 on 𝐸

for every 𝑡 ∈ [0, 1]. Consider parallel transport 𝑇𝑡 : 𝐸 → 𝐸 from 𝑡 = 0 to 𝑡 associated with

the covariant derivative ∇𝐴 + 𝑖𝜉 . The first of the above equations shows that 𝑇𝑡 defines an

isomorphism of holomorphic vector bundles E0 ≔ (𝐸, 𝜕𝐴,0) → E𝑡 ≔ (𝐸, 𝜕𝐴,𝑡 ). This map is

(sometimes) called the scattering map. Under suitable boundary conditions/stability conditions,

upto suitable equivalences, etc., given 𝜕𝐴 and ∇𝐴,𝜕𝑡 +𝑖𝜉 satisfying the first of the above equations,
(𝐴, 𝜉) can be recovered so that the second equation also holds. This is usually studied when

(𝐴, 𝜉) has singularities. In this case the scattering map is not an isomorphism, but a Hecke

modification (an isomorphism in the complement of a bunch of points). See Norbury [Nor11]

and Charbonneau and Hurtubise [CH11] to learn more about this. Hurtubise [Hur85] gave an

explanation of Theorem 5.66 via scattering maps.

5.12 Hitchin’s equation

[ This will be discussed in the problem session ]

[Nit87]

5.13 The moduli space of ASD instantons

Let (𝑋,𝑔) be an closed oriented Riemannian 4–manifold. Let 𝐺 be a compact semi-simple Lie

group. Let (𝑝 : 𝑃 → 𝑋, 𝑅) be a𝐺–principal bundle. The moduli space of ASD instantons on
(𝑝, 𝑅) is

M ≔ {𝐴 ∈ A : 𝐹+𝐴 = 0}/G.
At this stage, M is a topological space. The purpose of this section is to equip M with more

structure and understand its geometry better. (Here and throughout, to ease notation, (𝑝, 𝑅) is
dropped from the notation.)

It turns out to be benificial to construct the quotient

B ≔ A/G
and then construct M. A useful framework to proceed in is that of Banach manifolds. This

requires us to enlargeA andG.
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5.13.1 Sobolev spaces

Let𝑈 ⊂ R𝑛 be a bounded open subset (with smooth boundary).

[ Review definition of𝑊 𝑘,𝑝 (𝑈 ); check what is known: 𝐿𝑝? distributions? weak derivatives?;
mention scaling weight 𝑘 − 𝑛/𝑝 ]

Theorem 5.67 (Sobolev inequality/Sobolev embedding theorem). Let 𝑘, ℓ ∈ N0, 𝑝, 𝑞 ∈ [1,∞). If

𝑘 > ℓ, and 𝑘 − 𝑛

𝑝
⩾ ℓ − 𝑛

𝑞
,

then𝑊 𝑘,𝑝 (𝑈 ) ⊂𝑊 ℓ,𝑞 (𝑈 ) and the inclusion map is continuous.

Theorem 5.68 (Rellich–Kondrachov). Let 𝑘, ℓ ∈ N0, 𝑝, 𝑞 ∈ [1,∞). If

𝑘 > ℓ, and 𝑘 − 𝑛

𝑝
> ℓ − 𝑛

𝑞
,

then the inclusion map𝑊 𝑘,𝑝 (𝑈 ) ⊂𝑊 ℓ,𝑞 (𝑈 ) is compact.

Theorem 5.69 (Morrey inequality). Let 𝑘, 𝑟 ∈ N0, 𝑝 ∈ [1,∞), and 𝛼 ∈ (0, 1). If

𝑟 + 𝛼 = 𝑘 − 𝑛

𝑝
,

then every𝑊 𝑘,𝑝 function on𝑈 is (representable) by a 𝐶𝑟,𝛼 function on ¯𝑈 and the map

𝑊 𝑘,𝑝 (𝑈 ) → 𝐶𝑟,𝛼 ( ¯𝑈 )

is continuous. ■

Theorem 5.70 (Sobolev multiplication). Let 𝑘 ∈ N0, 𝑝 ∈ [1,∞). If

𝑘 − 𝑛

𝑝
> 0,

then the multiplication map

𝑊 𝑘,𝑝 (𝑈 ) ×𝑊 𝑘,𝑝 (𝑈 ) →𝑊 𝑘,𝑝 (𝑈 )

is continuous. ■

If (𝑋,𝑔) is a Riemannian manifold, 𝑉 is an Euclidean vector space, 𝐸 → 𝑋 is an Euclidean

vector bundle equipped with a covariant derivative ∇, then we define Sobolev spaces𝑊 𝑘,𝑝 (𝑋,𝑉 ),
𝑊 𝑘,𝑝Ω•(𝑋,𝑉 ),𝑊 𝑘,𝑝Γ(𝐸),𝑊 𝑘,𝑝Ω•(𝑋, 𝐸), etc. with norms

∥𝑠 ∥𝑊 𝑘,𝑝 ≔

𝑘∑︁
ℓ=0

(ˆ
𝑋

|∇𝑘𝑠 |𝑝vol𝑔

)
1/𝑝
.

These are Banach spaces. Of course, there are analogous definitions of with𝐶𝑟,𝛼 instead of𝑊 𝑘,𝑝
.

These are Banach spaces too. The results mentioned above carry over mutatis mutandis.
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5.13.2 Sobolev connections and gauge transformations

Let (𝑋,𝑔) be a closed connected oriented Riemannian manifold of dimension 𝑛. Let 𝐺 be a

compact semi-simple Lie group. Let (𝑝 : 𝑃 → 𝑋, 𝑅) be a 𝐺–principal bundle. The theory of

connections developed in the smooth case largely carries over to the Sobolev setting. Throughout,

let 𝑘 ∈ N0, 𝑝 ∈ (1,∞) with
𝑘 + 2 − 𝑛

𝑝
> 0.

(The significance of this restriction shall be explained shortly.)

Definition 5.71.

(1) A𝑊 𝑘+1,𝑝 connection on (𝑝, 𝑅) is a𝑊 𝑘+1,𝑝
1–form

𝜃𝐴 ∈𝑊 𝑘+1,𝑝Ω1(𝑃, 𝔤)

such that for almost every 𝑥 ∈ 𝑃 and 𝜉 ∈ 𝔤

𝜃𝐴 (𝑣𝜉 (𝑥)) = 𝜉

and for every 𝑔 ∈ 𝐺
𝑅∗𝑔𝜃𝐴 = Ad(𝑔)−1𝜃𝐴 .

Denote the set of𝑊 𝑘+1,𝑝
connections by𝑊 𝑘+1,𝑝A(𝑝, 𝑅).

(2) A𝑊 𝑘+2,𝑝 gauge transformation of (𝑝, 𝑅) is a𝑊 𝑘+2,𝑝
map

𝑢 : 𝑊 𝑘+2,𝑝 (𝑃,𝐺)𝐶

with the super-script 𝐶 indicating that for every 𝑔 ∈ 𝐺

𝑢 ◦ 𝑅𝑔 = 𝐶−1

𝑔 𝑢.

Denote the set of𝑊 𝑘+2,𝑝
gauge transformations by𝑊 𝑘+2,𝑝G(𝑝, 𝑅). •

The theory developed in the smooth case carries over to the Sobolev setting (provided the

regularity suffices to write the formulae.) Here are some facts (and consequences of the theory

of Sobolev spaces):

(1) 𝑊 𝑘+1,𝑝A(𝑝, 𝑅) is an affine space modelled on

𝑊 𝑘+1,𝑝Ω1(𝑋,Ad(𝑃)).

(2) Every 𝐴 ∈𝑊 𝑘+1,𝑝A(𝑝, 𝑅) ∩ 𝐿2𝑝A(𝑝, 𝑅) has a curvature

𝐹𝐴 ∈𝑊 𝑘,𝑝Ω2(𝑋,Ad(𝑃)) .

Indeed, the curvature map

𝐹 : 𝑊 𝑘+1,𝑝A(𝑝, 𝑅) ∩ 𝐿2𝑝A(𝑝, 𝑅) →𝑊 𝑘,𝑝Ω2(𝑋,Ad(𝑃))

is analytic.
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(3) 𝑊 𝑘+2,𝑝G(𝑝, 𝑅) is a Banach Lie group with Lie algebra

𝑊 𝑘+2,𝑝Γ(Ad(𝑃)),

and it acts smoothly on (the right of)𝑊 𝑘+1,𝑝A(𝑝, 𝑅):

𝜃𝑢∗𝐴 = Ad(𝑢)−1𝜃𝐴 + 𝑢∗𝜇𝐺 .

with 𝜇𝐺 ∈ Ω1(𝐺, 𝔤) denoting the Maurer–Cartan form on 𝐺 .

Only the last point requires any justification. Ultimately, this fact follows from the Sobolev

multiplication theorem. Naively, applything that theorem suggest that we should have imposed

the much stronger condition

𝑘 + 2 − 𝑛 + dim𝐺

𝑝
> 0.

The crucial point is that gauge transformations are 𝐺–equivariant and, therefore, the Sobolev

multiplication theorem in dimension 𝑛 can be used.

5.13.3 A slice theorem

Continue with the situation of the previous subsection, but we drop the pre-scripts𝑊 𝑘+1,𝑝
and

𝑊 𝑘+2,𝑝
ofA andG (in an attempt to not go insane). Our goal is to understand the quotient

B ≔ A/G.

This is a task for the slice theorem.

Proposition 5.72. The action ofG on A is proper.

Proof sketch. Let (𝑢𝑛) be a sequence G and (𝐴𝑛) a sequence in A. We have to prove that if

(𝐴𝑛) converges to 𝐴 in𝑊 𝑘+1,𝑝
and 𝑢∗𝑛𝐴𝑛 converges to 𝐵 in𝑊 𝑘+1,𝑝

, then (𝑢𝑛) has a convergent
subsequence in𝑊 𝑘+2,𝑝

. To do this one has to meditate over the identity

𝜃𝑢∗𝑛𝐴𝑛
= Ad(𝑢𝑛)−1𝜃𝐴𝑛

+ 𝑢∗𝑛𝜇𝐺 = 𝑢−1

𝑛 𝜃𝐴𝑛
𝑢𝑛 + 𝑢−1

𝑛 d𝑢𝑛

and use the idea of bootstrapping.

By hypothesis, 𝜃𝑢∗𝑛𝐴𝑛
and 𝜃𝐴𝑛

converge in𝑊 𝑘+1,𝑝
. Moreover, since 𝐺 is compact, ∥𝑢𝑛 ∥𝐿∞ is

bounded.

By the hypothesis ∥Ad(𝑢𝑛)−1𝜃𝐴𝑛
∥𝐿𝑝 is bounded. But then ∥𝑢∗𝑛𝜇𝐺 ∥𝐿𝑝 is bounded. This implies

that ∥d𝑢𝑛 ∥𝐿𝑝 is bounded. That is ∥𝑢𝑛 ∥𝑊 1,𝑝 is bounded. Using Sobolev embedding, Hölder’s

inequality etc. this argument can be iterated to obtain that ∥𝑢𝑛 ∥𝑊 𝑘+2,𝑝 is bounded. (The details

of this are not hard, but a little fiddly.)

Using Rellich–Kondrachov one sees that a subsequence of 𝑢𝑛 converges in𝑊
𝑘+1,𝑞

. This is

not quite enough. We wanted convergence in𝑊 𝑘+2,𝑝
. The last missing point is to use the above

identity to see that in this case d𝑢𝑛 must also converge in𝑊 𝑘+2,𝑝
. ■

The discussion from Section 3.3 extends to proper actions and Banach manifolds. The action

ofG onA however is not free.
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Definition 5.73. Let 𝐴 ∈ A. The isotropy group of 𝐴 is defined by

Γ𝐴 ≔ {𝑢 ∈ G : 𝑢∗𝐴 = 𝐴}. •

Henceforth, fix 𝑥0 ∈ 𝑃 . Recall the holonomy group Hol𝑥0
(𝐴) from Definition 4.38.

Proposition 5.74.

(1) The evaluation map ev = ev𝑥0
: G → 𝐺 defined by ev(𝑢) = 𝑢 (𝑥0) defines an injection

ev : Γ𝐴 ↩→ 𝐺 .

(2) The image of Γ𝐴 in 𝐺 is precisely the 𝐶𝐺 (Hol𝑥0
(𝐴)) the centraliser of the holonomy group.

Proof. By equivariance, 𝑢 (𝑥0) determines 𝑢 on 𝑝−1(𝑝 (𝑥0)). If 𝑢 preserves 𝐴, then 𝑢 commutes

with the 𝐴–parallel transport. Since 𝑋 is connected, this completely determines 𝑢. This proves

(1).

The fact that𝑢 commutes with𝐴–parallel transport also implies that ev(Γ𝐴) ⊂ 𝐶𝐺 (Hol𝑥0
(𝐴)).

To prove the reverse conclusion observe that if 𝑔 ∈ 𝐶𝐺 (Hol𝑥0
(𝐴)) then it can be extended a

𝐺–equivariant map 𝑝−1(𝑝 (𝑥0)) → 𝐺 and to a 𝐺–equivariant map 𝑢 : 𝑃 → 𝐺 by 𝐴–parallel

transport. Since 𝑢 is was constructed to commute with 𝐴–parallel transport, it preserves 𝐴. ■

As a consequence of the above, Γ𝐴 always contains 𝑍 (𝐺), the center of 𝐺 .
Definition 5.75. A connection𝐴 is irreducible if ev(Γ𝐴) = 𝑍 (𝐺). Denote the subset of irreducible
connections inA by

A∗.

𝐴 is reducible if it is not irreducible. •
Remark 5.76. The terminology “irreducible” is common but not ideal. Hol𝑥𝐴 (𝐴) < 𝐺 might very

well be a proper subgroup with centralizer 𝐶 (𝐺). ♣
The slice theorem now constructs the quotient

B∗ ≔ A∗/(G/𝑍 (𝐺)) = A∗/G

as a Banach manifold. If 𝐴0 ∈ A∗
and 𝜀 > 0 is sufficiently small, then a chart ofA∗/G around

[𝐴0] can be constructed as follows. Consider the local slice

𝑈𝐴0,𝜀 ≔ {𝐴 + 𝑎 : d
∗
𝐴0

𝑎 = 0, ∥𝑎∥𝑊 𝑘+1,𝑝 < 𝜀}.

The map 𝑈𝐴0,𝜀 → A∗/G is (the inverse of) a chart. Because every 𝑢 ∈ Γ𝐴 takes values in the

center 𝐶 (𝐺) it acts trivially on𝑈𝐴0,𝜀 . The slice condition

d
∗
𝐴0

𝑎 = 0

is precisely the condition to be 𝐿2
orthogonal to the action of infinitesimal gauge transformations

of 𝐴0:

d𝐴0
: 𝑊 𝑘+2,𝑝Γ(Ad(𝑃)) →𝑊 𝑘+1,𝑝Ω1(𝑋,Ad(𝑃)) .

C
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The above gives us a very useful description within which to understand the moduli space of

irreducible ASD instantons. The application we have in mind requires a description of reducible

ASD instantons.

Let Γ < G be any subgroup such that ev : Γ → 𝐺 is injective. Set

A(Γ) ≔ {𝐴 ∈ A : Γ𝐴 is conjugate to Γ},
AΓ ≔ {𝐴 ∈ A : Γ𝐴 = Γ}, and

𝑊G (Γ) ≔ 𝑁G (Γ)/Γ.

A moment’s thought shows that the inclusion map induces a homeomorphism

AΓ/𝑊G (Γ) � A(Γ)/G ≕ B(Γ) .

This former quotient can again be constructed as a Banach manifold using the slice theorem.

Here is how to understand the charts. Let 𝐴0 ∈ AΓ . The tangent space

𝑇𝐴0
A = Ω1(𝑋,Ad(𝑃))

decomposes into a Γ–invariant part and its 𝐿2
orthogonal complement. A local slice of the

quotient AΓ/𝑊G (Γ) is

𝑈 Γ
𝐴0,𝜀

≔ {𝐴0 + 𝑎 : 𝑎 is Γ–invariant, d∗𝐴0

𝑎 = 0, ∥𝑎∥𝑊 𝑘+1,𝑝 < 𝜀}.

Γ acts trivially on𝑈 Γ
𝐴0,𝜀

and the map𝑈 Γ
𝐴0,𝜀

→ AΓ/𝑊G (Γ) is (the inverse of) a chart.
Remark 5.77. A gauge tranformation 𝑢 ∈ G = 𝐶∞(𝑃,𝐺)𝐶 acts on 𝑎 ∈ 𝑇𝐴A = Ω1

hor
(𝑃, 𝔤)Ad

by

𝑢∗𝑎 = Ad(𝑢)−1𝑎.

Decompose

𝔤 = 𝔎 ⊕ 𝔪 with 𝔨 = 𝔤Γ𝐴 = {𝜉 ∈ 𝔤 : Ad(𝑔)𝜉 = 𝜉 for every 𝑔 ∈ Γ𝐴} and 𝔪 = 𝔨⊥.

𝔨 ⊂ 𝔤 is a Lie subalgebra. It contains the holonomy Lie algebra hol but might be larger. Denote

by 𝐾 < 𝐺 the corresponding Lie subgroup containing Hol. The bundle 𝑃 admits a reduction 𝑄

of structure group to 𝐾 . 𝑇𝐴AΓ is Ω
1(𝑋,Ad(𝑄)). In fact,AΓ (𝑃) = A∗(𝑄). ♣

The upshot of the discussion so far is that

B = B∗ ⨿
∐

Γ≠𝑍 (𝐺 )
B(Γ)

with all of the pieces being Banach manifolds.

Here is description of a neigborhood of 𝐴0 inB.

Proposition 5.78. Let 𝜀 > 0 be sufficiently small. Set

𝑈𝐴0,𝜀 ≔ {𝐴0 + 𝑎 : d
∗
𝐴0

𝑎 = 0, ∥𝑎∥𝑊 𝑘+1,𝑝 < 𝜀}.

The map 𝜙 : 𝑈𝐴0,𝜀/Γ → B is an open embedding. Moreover, the stabliser of 𝑎 in Γ is precisely
Γ𝐴0+𝑎 .
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More globally, there is a vector bundle V → B(Γ) obtained as the decend of the vector

bundle over AΓ whose fiber over 𝐴0 is

ker d𝐴0
∩

[
𝑊 𝑘+1,𝑝Ω1(𝑋,Ad(𝑃))Γ

]⊥
.

Γ acts on V and the structure ofB normal toB(Γ) is modelled on V/Γ.

C

In our application, we specialise to 𝐺 = Sp(1). In this case the only options for Γ are

{±1} = 𝑍 (Sp(1)), 𝑆1, and Sp(1) .

(This is not a completely trivialy fact.) Γ = Sp(1) corresponds to connections 𝐴 with holonomy

in {±1}. In particular, 𝐴 must be flat. These, will cannot appear in the spaces we are interested

in. If Γ = 𝑆1 = {exp 𝑡𝜉 : 𝑡 ∈ R} 𝜉 ∈ 𝑆2 ⊂ ImH, then the holonomy is among the following

a finite subgroup of 𝑆1
and 𝑆1

Again, the former correspond to flat connections and cannot appear. In both cases, the rank 2

Hermitian vector bundle 𝐸 corresponding to 𝑃 splits as 𝐸 = 𝐿 ⊕ 𝐿∗. In this case,

Ad(𝑃) = 𝑖R ⊕ 𝐿2

and

Ω1(𝑋,Ad(𝑃)) = Ω1(𝑋 ) ⊕ Ω1(𝑋, 𝐿2) .

The former summand is Γ invariant and Γ acts on the later by multiplication with unit complex

numbers (squared). Therefore,

B(𝑆1 ) � {𝐴0 + 𝑎 ∈ Ω1(𝑋, 𝑖R) : d
∗𝑎 = 0}.

(This means: there is a global slice for B(𝑆1 ) . This is true in all abelian gauge theories.) The

normal structure of B(𝑆1 ) at 𝐴0 is modelled on

{𝑎 ∈ Ω1(𝑋, 𝐿2) : d
∗
𝐴0

𝑎}/𝑆1.

Somewhat informally, the latter is

C∞/𝑆1 = the cone on C𝑃∞.

Exercise 5.79.What is the local model around the trivial connection?
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5.13.4 Kuranishi models for the moduli space

We are now in an excellent position to understand

M ≔ {𝐴 ∈ A : 𝐹+𝐴 = 0}/G.

We continue with dropping the Sobolev prescripts. I will explain at the end why this is ultimately

justified if one only cares aboutM.

OverA there is a trivial Banach space bundle

˜E ≔ A ×𝑊 𝑘,𝑝Ω+(𝑋,Ad(𝑃)) .

The anti-self dual part of the curvature defines a section of
˜E:

𝐴 ↦→ 𝐹+𝐴 .

˜E descends to a Banach space bundleE → B and 𝑠 defines as section ofE. By definition:

M = 𝑠−1(0) ⊂ B.

Proposition 5.80. Let 𝐴 be an ASD instanton. Set

𝑉𝐴,𝜀 ≔
{
𝐴 + 𝑎 : ∥𝑎∥𝑊 𝑘+1,𝑝 < 𝜀, d∗𝐴𝑎 = 0, 𝐹+𝐴+𝑎 = d

+
𝐴𝑎 + 1

2
[𝑎 ∧ 𝑎]+ = 0

}
.

The map 𝑉𝐴,𝜀/Γ𝐴 → M is an open embedding. Moreover, the stabiliser of 𝑎 in Γ𝐴 is Γ𝐴+𝑎 .

The term
1

2
[𝑎∧𝑎]+ can be treated a small perturbation (as we will see shortly). It is therefore

crucial to understand the linearised operator

𝛿𝐴 ≔ (d∗𝐴, d+𝐴) : 𝑊 𝑘+1,𝑝Ω1(𝑋,Ad(𝑃)) →𝑊 𝑘,𝑝Ω0(𝑋,Ad(𝑃)) ⊕𝑊 𝑘,𝑝Ω+(𝑋,Ad(𝑃)) .

Proposition 5.81. 𝛿𝐴 is an elliptic operator and, therefore, Fredholm; that is:

dim ker𝛿𝐴 < ∞ and dim coker𝛿𝐴 < ∞.

Moreover,

index𝛿𝐴 = dim ker𝛿𝐴 − dim coker𝛿𝐴 = −2𝑝1(Ad(𝑃)) + dim𝐺 · (𝑏1(𝑋 ) − 1 − 𝑏+(𝑋 )) .

It is an easy exercise to compute the symbol of 𝛿𝐴 and verify ellipticity. The index can be

computed using the Atyiah–Singer index theorem [see Atiyah–Hitchin–Singer].

Proposition 5.82. Let 𝑋,𝑌 be Banach spaces. Let𝑈 ⊂ 𝑋 be an open neighborhood of 0 ∈ 𝑋 . Let
𝑓 : 𝑈 → 𝑌 be a smooth map with 𝑓 (0) = 0. Suppose that 𝑇0 𝑓 : 𝑋 → 𝑌 is Fredholm. Choose
decompositions

𝑋 = ker𝑇0 𝑓 ⊕ coim𝑇0 𝑓 and 𝑌 = coker𝑇0 𝑓 ⊕ im𝑇0 𝑓 .

There is an open neighborhood 𝑉 of 0 in 𝑋 and a diffeomorphism 𝜙 : 𝑉 → 𝑈 and a linear
isomorphism 𝐼 : coim𝑇0 𝑓 → im𝑇0 𝑓 such that

(𝑓 ◦ 𝜙) (𝑥,𝑦) = (𝑔(𝑥,𝑦), 𝐼 (𝑦)) .
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Apply this with

𝑈 ⊂ ker(d∗𝐴 : 𝑊 𝑘+1,𝑝Ω1(𝑋,Ad) →𝑊 𝑘,𝑝Ω0(𝑋,Ad)), 𝑌 ≔𝑊 𝑘+1,𝑝Ω2(𝑋,Ad(𝑃))

and 𝑎 ≔ 𝐹+
𝐴+𝑎 . It follows that a neighborhood of [𝐴] ∈ M is modelled on

𝑓 −1(0)/Γ𝐴
for some Γ𝐴–equivariant smooth map

𝑓 : ker𝛿𝐴 → coker d
+
𝐴 .

5.13.5 Digression: the deformation complex

[ possibly skip this ]

If 𝐴 is an ASD instanton, then

0 → Ω0(𝑋,Ad(𝑃)) d𝐴−−→ Ω1(𝑋,Ad(𝑃))
d
+
𝐴−−→ Ω+(𝑋,Ad(𝑃)) → 0

is an elliptic complex. Its cohomology groups 𝐻 0

𝐴
, 𝐻 1

𝐴
, 𝐻 2

𝐴
correpond to infinitesimal gauge

transformations, infinitesimal deformations, and infinitesimal obstructions. In fact,

𝐻 1

𝐴 � ker𝛿𝐴 and 𝐻 2

𝐴 � coker d
+
𝐴 .

This encodes the infinitesimal deformation somewhat more naturally. The above map 𝑓 can be

understood as map 𝑓 : 𝐻 1

𝐴
→ 𝐻 2

𝐴
.

5.13.6 Freed–Uhlenbeck transversality theorem

Theorem 5.83 (Freed–Uhlenbeck). If𝐺 = SU(2) or SO(3), then for a generic Riemannian metric
𝑔 and every irreducible ASD instanton 𝐴, coker d

+
𝐴
= 0.

As a consequence, in the situation of the Freed–Uhlenbeck theorem M∗
, the moduli space

of irreducible ASD instantons, is a smooth manifold of dimension

−2𝑝1(Ad(𝑃)) + dim𝐺 · (𝑏1(𝑋 ) − 1 − 𝑏+(𝑋 )) .

5.14 Uhlenbeck compactness

The moduli spaceM is very rarely compact. Most applications of ASD instantons require either

some understanding of how compactness fails or even a suitable compactificationM. If you

want to understand this issue in detail, then [Weh04] is an excellent reference. Let me begin by

discussing what can possibly go wrong:

(1) If 𝐴 is a connection over R𝑛 , 𝑠𝜆 (𝑥) = 𝜆−1𝑥 , then 𝐴𝜆 ≔ 𝑠∗
𝜆
𝐴 satisfies

YM(𝐴𝜆) =
1

2

ˆ
R𝑛
|𝐹𝐴𝜆

|2(𝑥)d𝑥

=
1

2

ˆ
R𝑛
𝜆−4 |𝐹𝐴 |2(𝜆−1𝑥)𝜆𝑛d(𝜆−1𝑥)

= 𝜆𝑛−4
YM(𝐴) .
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That is the scaling-weight is 𝑛 − 4. As a conseqeunce: if 𝑛 ⩽ 3, then for a connection

to minimise its Yang–Mills energy it is not beneficial to “scale down”; if 𝑛 ⩾ 5, then

for a connection to minimise its Yang–Mills energy it is beneficial to “scale down”; and

𝑛 = 4 is the boarder line. Therefore, one should expect that: the compactness problem

for Yang–Mills connections in dimension 𝑛 ⩽ 3 should be quite easy (“sub-critical”); for

𝑛 ⩾ 5 it should be very hard (“super-critical”), and for 𝑛 = 4 it is something in between

(“critical”).

(2) In dimension 4, the Yang–Mills functional is not just scaling invariant. It is in fact invariant

under conformal changes: 𝑔 ↦→ 𝜆2𝑔 for 𝜆 ∈ 𝐶∞(𝑋, (0,∞)). This means that the conformal

group acts on Yang–Mills solutions. Since the conformal group is non-compact, this might

be a source of non-compactness.

(3) We already have examples of the failure of compactness. The curvature of the BPST

instanton 𝐴𝜇,𝑏 on H is given satisfies

|𝐹𝐴𝜇,𝑏
| = 192

1/2𝜇2

(𝜇2 |𝑞 − 𝑏 |2 + 1)2
.

As 𝜇 tends to∞, this fails to converge at 𝑞 = 𝑏. Away from 𝑞 = 𝑏, however, this converges

to zero and so does the 𝐴𝜇,𝑏 . That is: 𝐴𝑛 = 𝐴𝜇𝑛,𝑏 converges on almost all of R4
, but there

is one point at which something goes wrong. This point is identifiable by the fact that

the Yang–Mills energy in a small (𝑛–independent) ball around 𝑥 stays quite large:

lim inf

𝑟→0

lim inf

𝑛→∞
YM(𝐴𝑛 |𝐵𝑟 (𝑥 ) ) > 0.

The Yang–Mills energy concentrates at 𝑥 .

Another further issue that complicates the compactness analysis in Yang–Mills theory is

that because the gauge groupG is severely non-compact one cannot expect any sequence (𝐴𝑛)
of connections to converge without pasing to a gauge transformed seqeunce (𝑢∗𝑛𝐴𝑛). (Of course,
since M ⊂ A/G this is not an actuall issue, but it means that one has to be carefull about what

to expect.)

The following discussion focuses on dimension 𝑛 = 4 and ASD instantons. In a sense this is

ideal, because it gives us a topological energy bound

YM(𝐴) = − 1

4𝜋2
𝑝1(Ad(𝑝))

to get started. The theory in dimension 𝑛 ⩽ 3 is much simpler (and can easily be derived

from that in dimension 𝑛 = 4). The theory in dimension 𝑛 ⩾ 5 is quite a bit more complicated

(and indeed not fully understood). Some extra ideas and observations are needed for 𝑛 ⩾ 5,

in particular: the monotonicity formula due to Price [Pri83] and a more delicate 𝜀–regularity

theorem.
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5.14.1 Uhlenbeck gauge fixing

The upcoming discussion is local. Let 𝐺 < O(𝑁 ) be a Lie group. On 𝐵1(0) ⊂ R𝑛 consider the
trivial 𝐺–principal bundle (𝑝 : 𝐺 × 𝐵1(0) → 𝐵1(0), 𝑅). A gauge is a section of 𝑝 . The trivial

gauge is 𝑥 ↦→ (1, 𝑥). Of course, any other gauge be identified with a map 𝑢 : 𝐵1(0) → 𝐺 . By

comparison with the trivial gauge it can be identified with a gauge transformation. We regard

connection on (𝑝, 𝑅) as 1–forms on 𝐵1(0) with value in 𝔤.

Theorem 5.84 (Uhlenbeck [Uhl82a, Theorem 2.1]). Let 𝑛/2 < 𝑝 . There are constants 𝜀 = 𝜀 (𝑝,𝐺)
and 𝑐 = 𝑐 (𝑝,𝐺) such that the following holds. If 𝐴 ∈ A(𝑝, 𝑅) satisfies

∥𝐹𝐴∥𝐿𝑝 ⩽ 𝜀,

then there is a𝑊 2,𝑝 gauge 𝑢 such that 𝑢∗𝐴 satisfies the gauge fixing conditions

d
∗(𝑢∗𝐴) = 0,

𝑖 (𝜕𝑟 ) (𝑢∗𝐴) = 0 on 𝜕𝐵1(0)
(5.85)

and

(5.86) ∥𝑢∗𝐴∥𝑊 1,𝑝 ⩽ 𝑐 ∥𝐹𝐴∥𝐿𝑝 .

Remark 5.87. Uhlenbeck [Uhl82a, Theorem 2.1] is somewhat stronger than Theorem 5.84 (the

smallness condition is on ∥𝐹𝐴∥𝐿𝑛/2 ). Uhlenbeck [Uhl82a, Theorem 1.3] proved an even more

delicate result at the Sobolev border line 𝑝 = 𝑛/2. (In this case𝑢 might not be even be continuous.)

It turns out that one can get away with the above result, by working a little harder later. ♣
Remark 5.88. The restriction 𝑝 < 𝑛 might appear somewhat strange. It has to do with wanting

to avoid the borderline Sobolev embedding at𝑊 1,𝑛
. ♣

Sketch of proof of Theorem 5.84. The proof is based on the continuity method. The set

A𝜀 ≔ {𝐴 ∈𝑊 1,𝑝A : ∥𝐹𝐴∥𝐿𝑝 ⩽ 𝜀}.

is connected. Indeed, [0, 1] ∋ 𝜆 ↦→ 𝑠∗
𝜆
𝐴 with 𝑠𝜆 (𝑥) = 𝜆𝑥 joins any connection in A𝜀 to the

connection 0. (The scaling weight of the 𝐿𝑝 norm of a 2–form is 𝜆 (𝑛−2𝑝 )/𝑝
.)xs The strategy is to

prove that

A★
𝜀 ≔ {𝐴 ∈ A𝜀 : ∃𝑢 ∈𝑊 2,𝑝G : d(𝑢∗𝐴) = 0, 𝑖 (𝜕𝑟 ) (𝑢∗𝐴) = 0 on 𝜕𝐵1(0), ∥𝑢∗𝐴∥𝑊 1,𝑝 ⩽ 𝑐 ∥𝐹𝐴∥𝐿𝑝 .}

is open and closed.

Evidently,A∗
𝜀 is𝑊 2,𝑝G–invariant. The conditions

d
∗(𝑢∗𝐴) = 0,

𝑖 (𝜕𝑟 ) (𝑢∗𝐴) = 0,

∥𝑢∗𝐴∥𝑊 1,𝑝 ⩽ 𝑐 ∥𝐹𝐴∥𝐿𝑝

are closed.
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To see thatA★
𝜀 is closed, let (𝐴𝑛) be a sequence inA★

𝜀 which converges to𝐴 ∈ A. Denote by

𝑢𝑛 the gauge transformations such that 𝑢∗𝑛𝐴𝑛 satisfies the gauge fixing condition. The sequence

𝑢∗𝑛𝐴𝑛 has a weak limit in𝑊 1,𝑝
. The argument from the proof that the action ofG onA is proper

shows that 𝑢𝑛 converges weakly in𝑊 2,𝑝
to a limit 𝑢. This suffices to obtain the gauge fixing

conditions on 𝑢∗𝐴. Therefore, 𝐴 ∈ A★
𝜀 . This explains whyA

★
𝜀 is closed (regardless of the choice

of 𝑐)

To prove openness of A★
𝜀 it suffices (by G–invariance) to show that if 𝐴 satisfies the

gauge fixing condition and ∥𝐴∥𝑊 1,𝑝 ⩽ 𝑐 ∥𝐹𝐴∥𝐿𝑝 ⩽ 𝑐𝜀, then for 𝑎 with ∥𝑎∥𝑊 1,𝑝 < 𝛿 ≪ 1

there is a gauge transformation 𝑢 such that 𝑢∗(𝐴 + 𝑎) satisfies the gauge fixing condition

and ∥𝑢∗(𝐴 + 𝑎)∥𝑊 1,𝑝 ⩽ 𝑐 ∥𝐹𝐴∥𝐿𝑝 . Here is an assertion proving that the last condition will be

automatic.

Proposition 5.89. There are constant 𝑐 = 𝑐 (𝑛,𝐺) and 𝜀0 = 𝜀0(𝑛,𝐺) such that the following holds.
If 𝐴 ∈ A𝜀 satisfies (5.85) and ∥𝐴∥𝑊 1,𝑝 < 𝑐𝑠𝜀0, then

∥𝐴∥𝑊 1,𝑝 ⩽ 𝑐 ∥𝐹𝐴∥𝐿𝑝 .

Proof. If (5.85) holds, then

(d ⊕ d
∗)𝐴 = 𝐹𝐴 − 1

2

[𝐴 ∧𝐴]

𝑖 (𝜕𝑟 )𝐴 = 0.

[An integration by parts argument proves thatˆ
𝐵1 (0)

|∇𝐴|2 +
ˆ
𝜕𝐵1 (0)

|𝐴|2 =
ˆ
𝐵1 (0)

|d𝐴|2

This shows that the operator on the LHS is well-behaved on𝑊 1,2
. This is also the case for𝑊 1,𝑝

.]

The linear operator on the left-hand side of the above equations is an elliptic operator with

trivial kernel. (See [Weh04] for a discussion of such operators.) Therefore, there is a constant

𝑐 = 𝑐 (𝑛,𝐺) > 0 such that

∥𝐴∥𝑊 1,𝑝 ⩽ 𝑐 ∥𝐹𝐴 − 1

2

[𝐴 ∧𝐴] ∥𝐿𝑝 ⩽ 𝑐 ∥𝐹𝐴∥𝐿𝑝 + 𝑐 ∥𝐴∥2

𝐿2𝑝 .

Hölder’s inequality and Sobolev embedding gives

∥𝐴∥2

𝐿2𝑝 ⩽ 𝑐𝑆 ∥𝐴∥2

𝑊 1,𝑝 .

(This is exactly the condition 𝑝 > 𝑛/2). For 𝜀 ≪ 1, the term 𝑐𝑆 ∥𝐴∥𝑊 1,𝑝 is at most
1

2
and can be

absorbed into the left-hand side. ■

To prove thatA★
𝜀 with 𝑐 = 𝑐 (𝑛,𝐺) from above is an now application of the implicit function

theorem (to find the gauge transformation, because the condition ∥𝐴∥𝐿𝑛 < 𝑐𝑐𝑠𝜀0 is open). We

omit details of the proof, but here is the crucial point. If 𝐴 is in Uhlenbeck gauge and 𝑎 is small,

then 𝑢 = exp(𝜉) puts 𝐴 + 𝑎 in Uhlenbeck gauge if and only if

d
∗
d𝜉 = d

∗(𝑒−𝜉 (𝐴 + 𝑎)𝑒𝜉 )
𝜕𝑟𝜉 = 0 on the boundary.
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The linearisation of the equation at 𝑎 = 0, 𝜉 = 0 is the LHS. By elliptic theory this is surjective,

so one can apply the IFT. ■

Let 𝜀 as above.

Proposition 5.90. There are constants 𝑐𝑘 > 0 such that the following holds. If 𝐴 ∈ A on 𝐵1(0)
satisfies

𝐹+𝐴 = 0,

∥𝐹𝐴∥𝐿𝑝 ⩽ 𝜀,

then there is a (smooth) gauge transformation 𝑢 such that

∥𝑢∗𝐴∥𝑊 𝑘,𝑝 ⩽ 𝑐𝑘

for all 𝑘 .

Proof sketch. Theorem 5.84, we can assume that 𝐴 is already in Uhlenbeck gauge (i.e. 𝑢 = 1).
The result then follows from elliptic theory applied to𝐴 ↦→ (d+𝐴, d∗𝐴, 𝑖 (𝜕𝑟 )𝐴) and a little elliptic
bootstrapping. ■

By Rellich–Kondrachov, these𝑊 𝑘,𝑝
–bounds will give smooth convergence (on compact

subsets). The question is now: where do we get the bound ∥𝐹𝐴∥𝐿𝑝 ⩽ 𝜀 from? At this stage we

can only assume a global 𝐿2
bound: ∥𝐹𝐴∥𝐿2 = − 1

2

√︁
𝑝1(Ad(𝑃)).

5.14.2 𝜀–regularity

We continue with the situation on 𝐵1(0). The following result is essentially due to Uhlenbeck

[Uhl82b, Theorem 3.5]

Theorem 5.91. There are constants 𝑐R, 𝜀 > 0 such that the following holds. Let𝐴 be an anti-self-dual
instanton on 𝐵1(0). If

∥𝐹𝐴∥𝐿2 (𝐵1 (0) ) ⩽ 𝜀,

then

∥𝐹𝐴∥𝐿∞ (𝐵1 (0) ) ⩽ 𝑐R∥𝐹𝐴∥𝐿2 (𝐵1 (0) ) .

Proof. By the Weitzenböck formula implies that

∇∗
𝐴∇𝐴𝐹𝐴 = (d∗𝐴 + d𝐴)2𝐹𝐴 + {𝐹𝐴, 𝐹𝐴} = {𝐹𝐴, 𝐹𝐴}

with {−,−} denoting a universal bilinear form. Therefore,

Δ|𝐹𝐴 |2 = 2⟨∇∗
𝐴∇𝐴𝐹𝐴, 𝐹𝐴⟩ − 2|∇𝐴𝐹𝐴 |2 ⩽ 𝑐 |𝐹𝐴 |3.

This implies

Δ|𝐹𝐴 | ⩽ 𝑐 |𝐹𝐴 |2.
It turns out that such an inequality automatically implies the above assertion. [This is discussed

next.] ■
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Theorem 5.92 (𝜀–regularity). Consider 𝐵1(0) ⊂ R4. There are constants 𝑐, 𝜀 > 0 such that the
following holds. If 𝑓 ∈𝑊 1,2(𝐵1(0)) ∩ 𝐿∞(𝐵1(0)), 𝑓 ⩾ 0,

Δ𝑓 ⩽ 𝑓 2

holds weakly, and
∥ 𝑓 ∥𝐿2 (𝐵1 (0) ) ⩽ 𝜀,

then
∥ 𝑓 ∥𝐿∞ (𝐵

1/2
(0) ) ⩽ 𝑐 ∥ 𝑓 ∥𝐿2 (𝐵1 (0) .

Proof using the mean value inequality. Themean value inequality implies that if 𝑓 ∈ 𝐶∞(𝐵𝑟 (0), [0,∞))
satisfies

Δ𝑓 ⩽ Λ,

then

𝑓 (0) ⩽ 𝑐
(
𝑟−2∥ 𝑓 ∥𝐿2 (𝐵𝑟 (0) ) + Λ𝑟 2

)
.

(The mean value inequality is very easy for R𝑛 . For non-flat backgrounds a proof is contained
in [GT01, Theorem 9.20]; but see below.)

Define the auxiliary function 𝜙 : 𝐵1(0) → [0,∞) by

𝜙 (𝑥) ≔ (1 − |𝑥 |)2 𝑓 (𝑥).

It suffices to prove that

∥𝜙 ∥𝐿∞ ⩽ 𝑐𝜀 with 𝜀 = ∥ 𝑓 ∥𝐿2,

provided 𝜀 ≪ 1.

Since 𝜙 vanishes on 𝜕𝐵1(0), it achieves a maximum at some point 𝑥0 ∈ 𝐵1(0). Set

𝑟0 ≔
1

2

(1 − |𝑥0 |) and 𝑎0 ≔ 𝑓 (𝑥0) .

The task is then to prove that

𝑟 2

0
𝑎0 ⩽ 𝑐𝜀.

For every 𝑥 ∈ 𝐵𝑟0
(𝑥0),

1 − |𝑥 | ⩾ 1 − |𝑥0 | − 𝑟0 = 𝑟0.

[ draw a picture of this ] Therefore, since 𝜙 (𝑥) ⩽ 𝜙 (𝑥0),

𝑓 (𝑥) = (1 − |𝑥 |)−2𝜙 (𝑥) ⩽ (1 − |𝑥 |)−2𝜙 (𝑥0) =
(
1 − |𝑥0 |
1 − |𝑥 |

)
2

𝑓 (𝑥0) ⩽ 4𝑎0.

Therefore, by the mean value inequality for every 0 ⩽ 𝑟 ⩽ 𝑟0

𝑎0 ⩽ 𝑐0

(
𝑟−2𝜀 + 𝑟 2𝑎2

0

)
,

or, equivalently,

𝑟 2𝑎0 ⩽ 𝑐0

(
𝜀 + 𝑟 4𝑎2

0

)
.

125



That is for 𝑡 (𝑟 ) ≔ 𝑟 2𝑎0:

𝑡 (1 − 𝑐0𝑡) − 𝑐0𝜀 ⩽ 0.

This inequality holds for every 𝑟 ∈ [0, 𝑟0] and 𝑡 is non-negative. An inspection of the graph

of the polynomial on the left-hand side shows that, provided 𝜀 ≪ 1, 𝑡 ⩽ 2𝑐0𝜀. For 𝑟 = 𝑟0 this

proves the assertion. ■

0.2 0.4 0.6 0.8 1

−0.1

−5 · 10
−2

5 · 10
−2

0.1

𝑡

Remark 5.93. The polynomial

𝑝 (𝑡) = 𝑡 (1 − 𝑐𝑡) − 𝜀

has the roots

𝑡0 =
1

2𝑐

(
1 −

√
1 − 4𝑐𝜀

)
and 𝑡1 =

1

2𝑐

(√
1 − 4𝑐𝜀 + 1

)
.

As long as 𝜀 ⩽ 1/4𝑐 , the roots are both real and positive. As long as 𝜀 ≪𝑐 1,

𝑡0 ⩽ 2𝜀

♣

5.14.3 Convergence away from finitely many points

Theorem 5.94. Let (𝑋,𝑔) be a closed oriented Riemannian 4–manifold. Let 𝐺 < O(𝑁 ) be a Lie
group (such that the embedding is compatible with minus the Killing form). Let (𝑝 : 𝑃 : 𝑋, 𝑅) be
a principal 𝐺–bundle. Let (𝐴𝑛) be a sequence in of ASD instantons on (𝑝, 𝑅). After passing to a
subsequence the following holds. There are

(1) finitely many points 𝑥1, . . . , 𝑥𝑘 ∈ 𝑋 and numbers𝑚1, . . . ,𝑚𝑘 ∈ N,

(2) an ASD instanton 𝐴 on (𝑝, 𝑅) |𝑋\{𝑥1,...,𝑥𝑘 } , and

(3) a sequence of gauge transformations 𝑢𝑘 ∈ G((𝑝, 𝑅) |𝑋\{𝑥1,...,𝑥𝑘 })

such that
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(4) The sequence of measures |𝐹𝐴𝑛
|2vol weakly converges to

|𝐹𝐴 |2vol +
𝑘∑︁
𝑎=1

8𝜋2𝑚𝑎𝛿𝑥𝑘 .

(5) For every compact subset𝐾 ⊂ 𝑋\{𝑥1, . . . , 𝑥𝑘 },𝑢∗𝑛𝐴𝑛 |𝐾 converges to𝐴|𝐾 (in the𝐶∞ topology).

Proof sketch. Conisder the sequence of measures 𝜇𝑛 ≔ |𝐹𝐴𝑛
|2vol. The total mass of thesse

measures is

𝑐YM ≔ −2𝜋2𝑝1(Ad(𝑃));
in particular: it is uniformly bounded. Therefore, after passing to a subsequence 𝜇𝑛 weakly

converges to a measure 𝜇.

Let 𝑥 ∈ 𝑋 . Let 𝜀 be as in the 𝜀–regularity theorem. If there exisits an 𝑟 > 0 such that

lim inf

𝑛→∞

ˆ
𝐵𝑟 (𝑥 )

|𝐹𝐴𝑛
|2 < 𝜀2,

then on 𝐵𝑟 (𝑥) a subsequence of𝐴𝑛 converges after gauge transformation. Therefore, it is crucial

to understand the points for which this fails; that is: points with

lim

𝑟→0

lim inf

𝑛→∞

ˆ
𝐵𝑟 (𝑥 )

|𝐹𝐴𝑛
|2 ⩾ 𝜀2,

If there are at least 𝑘 points with this property, then

𝑘𝜀2 ⩽ lim

𝑟→0

lim inf

𝑛→∞

𝑘∑︁
𝑎=1

ˆ
𝐵𝑟 (𝑥𝑎 )

|𝐹𝐴𝑛
|2 ⩽ 𝑐YM.

This yields an apriori bound 𝑘 ⩽ 𝑐YM/𝜀2
.

This identifies the points {𝑥1, . . . , 𝑥𝑘 }. After passing to a subsequence, away from these

points, (𝐴𝑛) converges locally upto gauge transformations. These local gauge transformations

can be patched together. (This is not trivial; see Donaldson and Kronheimer [DK90, §4.4.2] and

Waldron [Wal19, §2.5].) This proves the convergence statement for 𝐴𝑛 .

By Fatou’s lemma

𝛿 = 𝜇 − |𝐹𝐴 |2vol

is a non-negative measure. It must be supported on {𝑥1, . . . , 𝑥𝑘 }. This proves the convergence
statement for the measures with𝑚𝑎 non-necessarily integers.

To prove that𝑚𝑎 is an integer one first has to prove that 𝐴 extends to all of 𝑋 but a bundle

which might be different from (𝑝, 𝑅). [ This *might* be proved in the next section. ] Then, by

construction for 𝑟 ≪ 1

𝑚𝑎 =
1

8𝜋2
lim

𝑛→∞

ˆ
𝐵𝑟 (𝑥𝑎 )

|𝐹𝐴𝑛
|2 − |𝐹𝐴 |2

=
1

8𝜋2
lim

𝑛→∞

ˆ
𝐵𝑟 (𝑥𝑎 )

⟨𝐹𝐴𝑛
∧ 𝐹𝐴𝑛

⟩ − ⟨𝐹𝐴 ∧ 𝐹𝐴⟩.

The last term can be rewritten as a Chern–Simons term and is known to be an integer. [The

details are omitted.] ■
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5.14.4 Uhlenbeck’s removable singularities theorem

[ discussed in problem session ] sketch

(1) decay [Otway’s unpublished argument]

(2) go to cylinder

(3) prove asymptotically flat

(4) gauge transform

(5) go back to ball

5.15 Digression: H±(𝑋,𝑔) and product connections

Let (𝑋,𝑔) be a closed oriented Riemannian 𝑛–manifold. Consider the differential operator

d + d
∗

: Ω•(𝑋 ) → Ω•(𝑋 ) .

Denote by

H𝑘 (𝑋,𝑔) ≔ ker(d + d
∗) ∩ Ω𝑘 (𝑋 )

the space of harmonic 𝑘–forms on 𝑋 . By Hodge theory,

H𝑘 (𝑋,𝑔) � H
𝑘
dR
(𝑋 ) .

The Hodge–∗–operator induces an isomorphism

∗ : H𝑘 (𝑋,𝑔) → H𝑛−𝑘 (𝑋,𝑔).

If 𝑛 = 4𝑘 , then ∗ has eigenvalues ±1 onH2𝑘 (𝑋,𝑔). The eigenspaces are denoted by

H±(𝑋,𝑔) ⊂ H2𝑘 (𝑋,𝑔).

Under the Hodge isomorphism, these correspond to the positive and negative definite subspace

of the intersection form

𝑄 : 𝑆2
H

2𝑘
dR
(𝑋 ) → R

defined by

𝑄 ( [𝛼], [𝛽]) ≔
ˆ
𝑋

𝛼 ∧ 𝛽.

The refined Betti number
𝑏±(𝑋 ) ≔ dimH±(𝑋,𝑔)

is independent of 𝑔.

Let us now specialise to 𝑛 = 4. Consider the trivial bundle (𝑝 : 𝑃 ≔ 𝑋 ×𝐺 → 𝑋, 𝑅) with the

product (or trivial) connection𝐴0. According to Section 5.13, we can understand a neighborhood

of [𝐴0] ∈ M as follows:
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(1) If 𝑢 ∈ G = 𝐶∞(𝑋,𝐺) fixes 𝐴0, then 𝑢 must be constant. Therefore, the isotropy group of

𝐴0 is

Γ𝐴0
= 𝐺.

(2) The operator

𝛿𝐴0
= (d∗𝐴0

, d+𝐴0

) : Ω1(𝑋, 𝔤) → Ω0(𝑋, 𝔤) ⊕ Ω+(𝑋, 𝔤)
is simply 𝛿 ⊗ id𝔤 with

𝛿 ≔ (d∗, d+) : Ω1(𝑋 ) → Ω0(𝑋 ) ⊕ Ω+(𝑋 ) .

Evidently,H1(𝑋,𝑔) ⊂ ker𝛿 . In fact, if 𝛿𝛼 = 0, then d
∗𝛼 = 0 and

0 =

ˆ
𝑋

2⟨d+𝛼, d𝛼⟩ =
ˆ
𝑋

2⟨d∗d+𝛼, 𝛼⟩ =
ˆ
𝑋

⟨d∗d𝛼, 𝛼⟩ =
ˆ
𝑋

|d𝛼 |2.

Therefore, d𝛼 = 0. This shows that

ker𝛿𝐴0
= H1(𝑋,𝑔) ⊗ 𝔤.

Moreover,

coker d
+
𝐴0

= H+(𝑋,𝑔) ⊗ 𝔤.

(3) Therefore, a neighborhood of [𝐴0] is modelled on

𝑓 −1(0)/𝐺

for smooth map

𝑓 : H1(𝑋,𝑔) ⊗ 𝔤 ⊃ 𝑈 → H+(𝑋,𝑔) ⊗ 𝔤.

In fact, 𝑓 = 0. Thus the model is(
H1(𝑋,𝑔) ⊗ 𝔤

)
/𝐺 =

(
H1(𝑋,𝑔) ⊗ 𝔱

)
/𝑊

with 𝔱 denoting a maximal abelian subalgebra and𝑊 denoting the Weyl group.

5.16 A sketch of Taubes’ gluing theorem

Uhlenbeck’s compactness theorem suggests that ASD instantons can degenerate by concentrat-

ing at points. At these points one might expect BPST instantons to “bubble off”. Taubes’ gluing

theorem is concerned with the question of whether one can construct such degenerating ASD

instantons. The idea is to glue BPST instantons into a product (trivial) connection.

Throughout, suppose that (𝑋,𝑔) is an closed oriented Riemannian 4–manifold with

𝑏+(𝑋 ) = 0.

Denote by 𝐴0 the product connection on the trivial Sp(1)–principal bundle over 𝑋 . Recall that
the BPST instanton is given by

𝐴𝐵𝑃𝑆𝑇 ≔
Im(𝑞d𝑞)
|𝑞 |2 + 1
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on the on the trivial Sp(1)–principal bundle over H = R4
. The first task is to scale 𝐴𝐵𝑃𝑆𝑇 down

by 0 < 𝜆 ≪ 1 and glue it into 𝐴0 to obtain an almost ASD instanton
˜𝐴𝜆 .

Identify a neighborhood of 𝑥0 with 𝐵2𝜀 (0). To simply our live, we will also assume that the

metric 𝑔 is the Euclidean metric on 𝐵𝜀 (0). The local connection 1–form of 𝐴0 simply vanishes.

We would like to “glue” the scaled down version of 𝐴𝐵𝑃𝑆𝑇 with 𝐴0 over the annulus

𝐵2𝜀 (0)\ ¯𝐵𝜀 (0) .

If 𝑠𝜆 (𝑞) ≔ 𝑞/𝜆, then
𝑠∗
𝜆
𝐴𝐵𝑃𝑆𝑇 ≔

Im(𝑞d𝑞)
|𝑞 |2 + 𝜆2

Unfortunately, the restriction of this to 𝐵2𝜀 (0)\ ¯𝐵𝜀 (0) is not at all small. (This not unexpected:

because otherwise we might be on our way to construct a non-flat ASD instanton on the trivial

bundle—which is impossible.) Consider the gauge transformation 𝑢 (𝑞) = 𝑞/|𝑞 | defined on

H\{0}. A computation reveals that

𝑢∗𝐴𝐵𝑃𝑆𝑇 = − Im(d𝑞𝑞)
|𝑞 |2(1 + |𝑞 |2)

and

𝑠∗
𝜆
(𝑢∗𝐴𝐵𝑃𝑆𝑇 ) = −𝜆2

Im(d𝑞𝑞)
|𝑞 |2(𝜆2 + |𝑞 |2)

The restriction of this to 𝐵2𝜀 (0)\ ¯𝐵𝜀 (0) is small if 𝜆 ≪ 1.

Define a Sp(1)–principal bundle over 𝑋 by gluing the trivial Sp(1)–principal bundles over
𝑋\𝐵𝜀 (0) and 𝐵2𝜀 (0) over 𝐵2𝜀 (0)\𝐵𝜀 (0) via the gauge transformation 𝑢 (𝑞) = 𝑞/|𝑞 |. Choose a
cut-off function 𝜒 : [0, 2) → [0, 1] which is equal to one on [0, 1] and has compact support.

Define a connection
˜𝐴𝜆 to agree with

𝜒 ( |𝑞 |/𝜀)𝑠∗
𝜆
𝐴𝐵𝑃𝑆𝑇

on 𝐵2𝜀 (0) and with 𝐴0 on 𝑋\ ¯𝐵2𝜀 (0). Since

𝑢∗(𝜒 ( |𝑞 |/𝜀)𝑠∗
𝜆
𝐴𝐵𝑃𝑆𝑇 ) = −𝜒 ( |𝑞 |/𝜀)𝜆2

Im(d𝑞𝑞)
|𝑞 |2(𝜆2 + |𝑞 |2) ,

this gives us the desired interpolation.

How small is 𝐹+
𝐴̃𝜆

? Certainly, 𝐹+
𝐴̃𝜆

vanishes outside of the annulus 𝐵2𝜀 (0)\𝐵𝜀 (0). To simplify

notation, set

𝑎𝜆 ≔ −𝜆2
Im(d𝑞𝑞)

|𝑞 |2(𝜆2 + |𝑞 |2) .

Observe that for 𝜀 ⩽ |𝑞 | ⩽ 2𝜀,

|𝑎𝜆 | ⩽ 𝑐 (𝜀) · 𝜆2

[Note: while 𝜀 should be thought of as small, it is also fixed and 𝜆 is much smaller than 𝜀.]
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We compute

𝐹𝐴̃𝜆
= 𝜒 ( |𝑞 |/𝜀)𝐹𝑢∗𝑠∗

𝜆
𝐴𝐵𝑃𝑆𝑇 + 𝜀−1𝜒 ′( |𝑞 |/𝜀)d|𝑞 | ∧ 𝑎𝜆 −

1

2

(𝜒 ( |𝑞 |/𝜀)2 − 𝜒 ( |𝑞 |/𝜀)) [𝑎𝜆 ∧ 𝑎𝜆]

The first term is anti-self-dual. Therefore, it suffices to estimate the last two terms. Therefore,


𝐹+
𝐴̃𝜆





𝐿∞
⩽ 𝑐 (𝜀, 𝜒) · 𝜆2.

The task at hand is now to find 𝑎 = 𝑎(𝜆) such that

𝐹+
𝐴̃𝜆+𝑎

= 𝐹+
𝐴̃𝜆

+ d
+
𝐴̃𝜆
𝑎 + 1

2

[𝑎 ∧ 𝑎]+ = 0.

To break the gauge symmetry it is customary to supplement this equation with

d
∗
𝐴̃𝜆
𝑎 = 0.

The full system of equations is then

𝛿𝐴̃Λ
𝑎 + 1

2

[𝛼 ∧ 𝑎]+ + 𝐹+
𝐴̃𝜆

= 0.

Remark 5.95. Schematically, this is of the form

𝐿𝑥 +N(𝑥) + 𝐸 = 0.

with 𝐿 linear,N non-linear, and 𝐸 denoting the initial (pre-gluing) error. There is a standard

approach towards solving such equations. Let us pretend thatN = 0 and that the problem is

finite-dimensional. In this case, we can certainly always solve the equation provided that 𝐿 is

surjective. Indeed, if 𝑅 is a right-inverse of 𝐿 (that is: 𝐿𝑅 = 1), then

𝑥 = −𝑅𝐸

is the desired solution.

IfN does not vanish, then the equation can still be rewritten as follows by setting 𝑥 = 𝑅𝑦

𝑦 = −(N(𝑅𝑦) + 𝐸).

This is a fixed-point equation. It can be solved in 𝐵𝜌 (0) (uniquely) using Banach’s fixed-point
theorem provided 𝑦 ↦→ −(N(𝑅𝑦) + 𝐸) is a contraction for |𝑦 | ⩽ 𝜌 ≪ 1. ♣

The above scheme can be carried out in the situation at hand with

𝐿𝜆 ≔ 𝛿𝐴̃𝜆
: 𝑊 1,𝑝Ω1(𝑋,Ad(𝑃)) → 𝐿𝑝Ω0(𝑋,Ad(𝑃)) ⊕ 𝐿𝑝Ω+(𝑋,Ad(𝑃))

and 𝑝 > 2 (so that𝑊 1,𝑝 ↩→ 𝐿2𝑝
with a constant independent of 𝜆 by Kato). The hard part is to

construct a right-inverse 𝑅𝜆 : 𝐿𝑝 →𝑊 1,𝑝
of 𝐿𝜆 with

∥𝑅𝜆 ∥L ⩽ 𝑐1𝜆
−𝛼
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with 0 ⩽ 𝛼 < 1. (Here ∥−∥L denotes the operator norm.) (IMHO the best way to do this is

to patch right-inverses for the models. For the trivial connection the right-inverse is easy to

obtain. For the BPST instanton one has to think a bit.) The easy part is to observe that


𝐹+
𝐴̃𝜆





𝐿𝑝
⩽ 𝑐2𝜆

2

and that N(𝑎) ≔ 1

2
[𝑎 ∧ 𝑎]+ satisfies

∥N(𝑎1) −N(𝑎2)∥𝐿𝑝 ⩽ 𝑐3(∥𝑎1∥𝑊 1,𝑝 + ∥𝑎2∥𝑊 1,𝑝 )∥𝑎1 − 𝑎2∥𝑊 1,𝑝 .

Therefore,

𝑎 ↦→ −
(
1

2

[𝑅𝜆𝑎 ∧ 𝑅𝜆𝑎]+ + 𝐹+𝐴̃𝜆

)
is a contraction on 𝐵𝜌 (0) ⊂ 𝐿𝑝 provided

𝑐3𝑐
2

2
𝜆−2𝛼𝜌 < 1 and 𝑐3𝑐

2

2
𝜆−2𝛼𝜌2 + 𝑐2𝜆

2 ⩽ 𝜌.

Since 𝛼 < 1, a suitable 𝜌 can be found.

The upshot of all of this is that if 𝑏+(𝑋 ) = 0, then for every 𝑥 ∈ 𝑋 and every 0 < 𝜆 ≪ 1 we

can construct an ASD instanton 𝐴𝜆,𝑥 which is modelled (very closely) on a 𝜆–scaled down BPST

instanton in a neighborhood of 𝑥 .

5.17 Donaldson’s diagonalisation theorem

Theorem 5.96 (Donaldson [Don83, Theorem 1]). Let 𝑋 be a closed oriented smooth 4–manifold
with 𝜋1(𝑋 ) = 1. If the intersection form 𝑄 : H

2(𝑋,Z) ⊗ H
2(𝑋,Z) → Z is positive or negative

definite, then it is diagonalisable over Z.
This is a remarkable theorem. Over Z it is far from true that every symmetric bilinear form

is diagonalisable. The quadratic form given by the matrix

𝐸8 =

©­­­­­­­­­­­«

2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1 −1

−1 2 −1

−1 2

−1 2

ª®®®®®®®®®®®¬
is positive definite. However, 𝐸8 is not diagonalisable over Z. It is possible to construct a closed

oriented topological 4–manifold 𝑋 with 𝜋1(𝑋 ) = 1 with 𝑄 = 𝐸8 (the “𝐸8 manifold”). 𝑄 is even

and its signature 𝜎 (𝑋 ) = 8. If 𝑋 were smooth, then it would admit a spin structure Rohklin’s

theorem would imply that 𝜎 (𝑋 ) is divisible by 16. Therefore, 𝑋 cannot be equipped with a

smooth structure. Donaldson’s theorem yields the same conclusion, of course.

The above theorem should be contrasted with the following.
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Theorem 5.97 (Freedman [Fre82, Theorem 1.5]). Let 𝑄 be an integral unimodular quadratic form.
There is a closed topological 4–manifold 𝑋 with 𝜋1(𝑋 ) realising 𝑄 as its intersection form.

Donaldson’s theorem shows that many of Freedman’s manifolds cannot be equipped with

smooth structures.

Sketch of proof of Theorem 5.96. There is no loss in assuming that 𝑄 is negative definite; i.e.:

𝑏+(𝑋 ) = 0. Denote by (𝑝 : 𝑃 → 𝑋, 𝑅) the SU(2)–principal bundle with 𝑐2(𝑃) = 1. (By a

Theorem of Dold and Whitney 𝑐2 specifies (𝑝, 𝑅) up to isomorphism.) Choose a generic metric

on 𝑔 in the sense of Freed–Uhlenbeck. Denote by
¯M the Uhlenbeck compactification of the

moduli space of ASD instantons on (𝑝, 𝑅) with respect to 𝑔. The proof is based on a detailed

understanding ofM.

By the Freed–Uhlenbeck theorem, the subset M∗
of irreducible ASD instantons carries the

structure of a smooth manifold of dimension

dimM∗ = 8𝑐2 + 3(𝑏1 − 1 − 𝑏+) = 5.

We need to understand:

(1) The locus of reducible ASD instantonsMred ≔ M\M∗
and how it fits withM∗

.

(2) The locus of ideal ASD instantons 𝜕M ≔ M\M and how it fits withM∗
.

The first part is by far the easier given the discussion in Section 5.13. The isotropy group

Γ𝐴 of a reducible ASD instanton 𝐴 on (𝑝, 𝑅) is either 1 or 𝑆1
. If Γ𝐴 = 1, then 𝐴 is flat; but (𝑝, 𝑅)

carries not flat connections (by Chern–Weil theory). If Γ𝐴 = 𝑆1
, then as we already discussed,

the Hermitian rank 2 vector bundle 𝐸 associated with (𝑝, 𝑅) splits as

𝐸 = 𝐿 ⊕ 𝐿∗

and𝐴 arises from an ASD instanton on 𝐿. Since 𝑏1(𝑋 ) = 0 and 𝑏+(𝑋 ) = 0, 𝐿 admits unique ASD

instanton up to gauge transformations. The bundle 𝐿 must satisfy

1 = 𝑐2(𝐸) = −𝑐1(𝐿)2.

Indeed, the elements of Mred
precisely corresponds to the pairs ±𝑥 ∈ H

2(𝑋,Z) of solutions of

𝑄 (𝑥, 𝑥) = −1.

Denote the number of those solutions by

𝑛(𝑄).

Describes Mred
as a finite set. How does it fit the rest of M∗

? The discussion in Section 5.13

says that a neigborhood of [𝐴] ∈ Mred
is modelled on

𝑓 −1(0)/Γ𝐴
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with 𝑓 : ker𝛿𝐴 ⊃ 𝑈 → coker d
+
𝐴
a smooth map with 𝑓 (0) = 0 and 𝑇0 𝑓 = 0. Here we restrict

𝛿𝐴 = (d∗
𝐴
, d+
𝐴
) to Ω1(𝑋, 𝐿2) → Ω0(𝑋, 𝐿2) ⊕ Ω+(𝑋, 𝐿2) Therefore, 𝛿𝐴 and d

+
𝐴
are complex vector

spaces and 𝑆1
acts by multiplication with the square unit complex numbers. An application of

the index theorem proves that

dimC ker𝛿𝐴 − dimC coker d
+
𝐴 = 3.

It follows ultimately from the Freed–Uhlenbeck theorem, that coker d
+
𝐴

= 0. Therefore, a

neighborhood of 𝐴 is modelled on

C3/𝑆1 = cone(C𝑃2).

[ DRAW PICTURE OF WHAT IS KNOWN SO FAR. ]

The next task is to identify 𝜕M. By the energy identity, every [𝐴] ∈ M has YM(𝐴) = 8𝜋2
.

Therefore, if [𝐴𝑛] inM converges to [𝐴0,
∑𝑘
𝑎=1

𝑚𝑎𝑥𝑎] ∈ 𝜕M, then 𝐴0 must be flat, 𝑘 = 1, and

𝑚1 = 1 by the convergence statement about the measures. Since 𝜋1(𝑋 ) = 1, 𝐴0 must be trivial.

Therefore, 𝜕M ⊂ 𝑋 . Taubes’ theorem proves that 𝜕M = 𝑋 . This suggests that M\Mred
is a

smooth manifold with boundary. While this is true, but requires some actual work to construct

the charts on the boundary. (This is Donaldson’s collar theorem.)

[ UPDATE PICTURE. ]

The upshot of the above analysis is thatM furnishes us with a compact cobordism between

𝑋 and 𝑛(𝑄) copies C𝑃2
. The proof can now be completed as follows.

Lemma 5.98. If𝑄 is a negative definite quadratic form over Z, then 𝑛(𝑄) ⩽ rk𝑄 . Equality holds if
and only if 𝑄 is diagonal.

Proof. This proved by induction on 𝑟 ≔ rk𝑄 . If 𝑄 (𝑥) = −1, then Z𝑟 = Z𝛼 ⊥ (Z𝛼)⊥ via

𝑦 ↦→ (⟨𝑦, 𝑥⟩ · 𝑥,𝑦 − ⟨𝑦, 𝑥⟩ · 𝑥) .

Of course, the new intersection form 𝑄 ′
on (Z𝛼)⊥ has 𝑛(𝑄 ′) = 𝑛(𝑄) − 1 and rk(𝑄 ′) = rk(𝑄) −

1. ■

Since𝑄 is negative definite, rk(𝑄) = 𝜎 (𝑄). The signature is invariant of oriented cobordisms.

Therefore,

rk(𝑄) = 𝜎 (𝑄) =
𝑛 (𝑄 )∑︁
𝑎=1

𝜀𝑎𝜎 (C𝑃2) =
𝑛 (𝑄 )∑︁
𝑎=1

𝜀𝑎 ⩽ 𝑛(𝑄)

with 𝜀𝑎 ∈ {±1} according to the orientation the corresponding of C𝑃2
. It follows that

𝑛(𝑄) = rk𝑄

and, therefore, 𝑄 is diagonalisable. ■
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